簡易檢索 / 詳目顯示

研究生: 吳明翰
Ming-Han Wu
論文名稱: 低溫鋁擴散進入非晶矽基體形成P型層的技術及擴散阻隔層的探討
Low-temperature diffusion of Al into a-Si:H matrix to form p-type layers and its diffusion barrier study
指導教授: 洪儒生
Lu-sheng Hong
口試委員: 黃柏仁
Bohr-ran Huang
周賢鎧
Shyan-kay Jou
陳良益
Liang-yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 101
中文關鍵詞: 矽異質接合低溫鋁擴散阻隔層氧化銦非晶氧化矽濕式蝕刻電漿輔助化學氣相沉積
外文關鍵詞: low-temperature aluminum diffusion, amorphous Si matrix, amorphous silicon oxide
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討如何藉由擴散阻隔層的加入適時阻擋低溫下鋁擴散進入非晶矽/單晶矽異質接合界面,以求得p型背電場形成之同時亦保有高異質接合鈍化效果之目的。我們選用兩種擴散阻隔層:第一種是以5奈米厚的氧化銦層作為阻隔鋁原子繼續進入非晶矽基質有很好的效果,此時晶片的暗示開路電壓高達700 mV;第二種是5奈米厚的p型非晶氧化矽層,乃藉由在成長非晶矽中途通入微量氧氣(氧氣/矽甲烷流量=4%)形成阻隔層,此時晶面的暗示開路電壓可到達696 mV。此外對於Al/a-Si:H(d)/diffusion barrier layer /a-Si:H(i)/c-Si結構退火後的表面鋁清洗過程探討發現,相對於以氧化銦做阻隔層的試片在酸洗表面Al層的會將經退火形成的p型a-Si:H(d)層一起剝離洗除,以p型非晶氧化矽作為阻隔層的試片在1% HF 溶液經30 sec浸泡處理可以成功的去除表面殘留的鋁金屬層,並顯露出電阻率為1.5×10-2Ω•cm的p型a-Si:H(d)層以及781μsec的晶片少數載子生命週期。


    The insertion of a diffusion barrier layer in a a-Si:H(dissusion)/diffusion barrier layer/a-Si:H(intrinsic)/c-Si heterojunctin structure has been studied. Two kinds of diffusion barrier layers were tried. The first one was to insert a 5nm-thick indium oxide (In2O3) layer into two amorphous Si layers which showed an excellent barrier property on the diffusion of Al, nevertheless the ITO layer was lately peered off in a wet etching process to remove Al contact layer. By contrast, the insertion of a p-type amorphous silicon oxide (a-SiO (p))layer not only can blockade the diffusion of Al but also can resist the etching of wet acid etching. The experimental results showed that by inserting a 5-nm-thicka-SiO (p)layer formed by introducing a 4% flow ratio of oxygen into SiH4 plasma can result in a high wafer carrier lifetime of 854μsec (implied Voc = 696 mV) for the p type a-Si:H(d)/a-SiO (p)diffusion barrier/a-Si:H(i)/c-Si heterojunction structure.

    目錄 摘要 I Abstract III 誌謝 IV 目錄 V 圖索引 IX 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 矽晶太陽能電池 6 1.3 異質接合太陽能電池介紹與原理 9 1.4 薄膜非晶矽的性質與成長機制 16 1.5 低溫鋁擴散原理 20 1.6 擴散阻隔層原理 23 1.7 研究目的與方向 24 第二章 實驗部分 25 2.1 實驗裝置研究目的與方向 25 2.1-1 使用rf-PECVD系統成長本質層、p型及n型非晶矽薄 25 2.1-2 使用磁控濺鍍系統長成透明導電薄膜 31 2.1-3 使用蒸鍍系統長成鋁層薄膜 33 2.1-4 使用高溫爐系統進行熱擴散製程 35 2.2 實驗程序 36 2.2-1 矽晶基材之清洗 36 2.2-2 玻璃基材的清洗 38 2.2-3 異質接合太陽能電池之製作程序 39 2.2-4 低溫鋁擴散太陽能電池之製作程序 40 2.2-5 擴散阻隔層之製作程序 41 2.2-6 低溫鋁擴散薄膜之製作程序 42 2.3 實驗分析儀器 43 2.3-1 拉曼光譜儀 43 2.3-2 紫外光/可見光光譜儀 (UV/VIS) 45 2.3-3 場發射掃瞄式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 48 2.3-4 X射線光電子能譜化學分析儀(X-ray photoelectron spectroscopy) 49 2.3-5 霍爾量測儀 (Hall measurement) 50 2.3-6 少數載子生命週期量測儀(Lifetime tester) 53 2.3-7 橢圓偏光儀(Ellipsometer) 57 第三章 結果與討論 58 3.1 低溫鋁擴散形成高摻雜p型多晶矽層應用在矽晶異質接合之研究 58 3.1-1 在玻璃基材上製作Al/a-Si:H/glass結構後經低溫退火處理後形成鋁摻雜p型矽膜層 59 3.1-2 在矽基材上製作Al/a-Si:H結構後經低溫退火處理形成鋁摻雜p型矽膜層 64 3.1-3 加入擴散阻絕層於Al/a-Si:H(d)/a-Si:H(i)/c-Si結構時的矽晶異質接合特性 66 3.1-4 加入氧化銦形成Al/a-Si:H(d)/In2O3/a-Si:H(i)/c-Si結構作為擴散阻隔層時對晶片的鈍化效果 67 3.2 加入p型非晶氧化矽形成Al/a-Si:H(d)/a-SiO:H(p) /a-Si:H(i)/c-Si結構作為擴散阻隔層時對晶片的鈍化效果 71 3.2-1 插入氧化銦作阻隔層的Al/a-Si:H(d)/In2O3/a-Si:H(i)/c-Si結構退火後在不同鋁酸洗條件下對晶片的影響 76 3.2-2 插入p型非晶氧化矽做阻隔層的Al/a-Si:H(d)/a-SiO:H(p) /a-Si:H(i)/c-Si結構退火後的鋁層酸洗過程變化 80 第四章 結論 83 參考文獻 85

    [1] Source U.S. Energy information administration EIA.
    [2] KRI Report No. 8:Solar Cells, February 2005.
    [3] The National Center for Photovaoltaics (NCPV) at NREL, DOE, April 2012.
    [4] D. M. Chapin, C. S. Fuller, G. L. Pearson, Journal of Applied Physics 1954, 25, 676-677.
    [5] European Photovolatic Industry Associsation EPIA.
    [6] Crystalline Si technology and manufacturing group, CTM
    [7] M. J. Kerr, P. Campbell, A. Cuevas, in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, IEEE, 2002, pp. 438-441.
    [8] R. M. Swanson, in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., IEEE, 2005, pp. 889-894.
    [9] C. Del Canizo, G. Del Coso, W. Sinke, Progress in photovoltaics: research and applications 2009, 17, 199-209.
    [10] J. Zhao, A. Wang, M. A. Green, Progress in Photovoltaics: Research and Applications 1999, 7, 471-474.
    [11] A. W. Blakers, M. A. Green, Applied Physics Letters 1986, 48, 215-217.
    [12] J. Zhao, A. Wang, M. A. Green, Solar Energy Materials and Solar Cells 2001, 66, 27-36.
    [13] J. Zhao, A. Wang, M. Green, Technical digest of International PVSEC-11, Saporop 1999, 557.
    [14] D. De Ceuster, P. Cousins, D. Rose, M. Cudzinovic, W. Mulligan, in 22nd European Photovoltaic Specialist Conference, 2007.
    [15] E. Boyes, Physics Education 1990, 25, 53.
    [16] W. Fuhs, K. Niemann, J. Stuke, in American Institute of Physics Conference Series, Vol. 20, 1974, pp. 345-350.
    [17] Y. Hamakawa, H. Okamoto, K. Okuda, Google Patents, 1985.
    [18] S. De Vecchi, T. Blévin, T. Desrues, F. Souche, D. Muñoz, M. Lemiti, P.-J. Ribeyron, Energy Procedia 2013, 38, 701-706.
    [19] E. Conrad, L. Korte, K. Maydell, H. Angermann, C. Schubert, R. Stangl, M. Schmidt, in Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, 2006, pp. 784-787.
    [20] L. Fesquet, S. Olibet, E. Vallat-Sauvain, A. Shah, C. Ballif, 2007.
    [21] J.-P. Kleider, R. Chouffot, A. Gudovskikh, P. R. i Cabarrocas, M. Labrune, P.-J. Ribeyron, R. Brüggemann, Thin Solid Films 2009, 517, 6386-6391.
    [22] U. Das, S. Hegedus, L. Zhang, J. Appel, J. Rand, R. Birkmire, in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, IEEE, 2010, pp. 001358-001362.
    [23] M. Schmidt, L. Korte, A. Laades, R. Stangl, C. Schubert, H. Angermann, E. Conrad, K. Maydell, Thin Solid Films 2007, 515, 7475-7480.
    [24] L. Korte, E. Conrad, H. Angermann, R. Stangl, M. Schmidt, Solar Energy Materials and Solar Cells 2009, 93, 905-910.
    [25] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Japanese Journal of Applied Physics 1992, 31, 3518.
    [26] M. Stutzmann, D. Biegelsen, R. Street, Physical review B 1987, 35, 5666.
    [27] M. H. Cohen, H. Fritzsche, S. Ovshinsky, Physical Review Letters 1969, 22, 1065.
    [28] D. Carson, C. Wronski, Pennsylvania State University, USA 2007.
    [29] T. J. Konno, R. Sinclair, Materials Science and Engineering: A 1994, 179, 426-432.
    [30] S. K. Deb, in World Renewable Energy Congress (WREC) VI, Brighton, UK, 2000, pp. 1-9.
    [31] M. Keevers, T. Young, U. Schubert, Milan, Italy 2007, 1783.
    [32] A. Voutsas, Applied Surface Science 2003, 208, 250-262.
    [33] G. Andra, J. Bergmann, A. Bochmann, F. Falk, A. Grawlik, E. Ose, J. Plentz, S. Dauwe, and T. Kieliba, Conference Record od the 2006 IEEE 4th Word Conference on Photovolatic Energy Conversion. Waikoloa, HI, USA, 2006.
    [34] O. Nast, A. J. Hartmann, Journal of Applied Physics 2000, 88, 716-724.
    [35] Y. Matsumoto, Z. Yu, Japanese Journal of Applied Physics 2001, 40, 2110.
    [36] J. Schneider, J. Klein, M. Muske, S. Gall, W. Fuhs, Applied Physics Letters 2005, 87, 031905.
    [37] T. Konno, R. Sinclair, in Proceedings of the Royal Microscopical Society Conference, 1993.
    [38] T. J. Konno, R. Sinclair, Philosophical Magazine B 1992, 66, 749-765.
    [39] P. I. Widenborg, A. G. Aberle, Journal of Crystal Growth 2002, 242, 270-282.
    [40] O. Nast, S. R. Wenham, Journal of applied physics 2000, 88, 124-132.
    [41] M. Hossain, H. H. Abu-Safe, H. Naseem, W. D. Brown, Journal of electronic materials 2006, 35, 113-117.
    [42] H. Cai, D. Zhang, Y. Xue, K. Tao, Solar Energy Materials and Solar Cells 2009, 93, 1959-1962.
    [43] P. Prathap, A. Slaoui, X. Maeder, Energy Procedia 2010, 2, 189-194.
    [44] P. Pathi, O. Tüzün, A. Slaoui, in MRS Proceedings, Vol. 1153, Cambridge Univ Press, 2009, pp. 1153-A1105-1104.
    [45] V. Srikar, A. K. Swan, M. S. Unlu, B. B. Goldberg, S. M. Spearing, Journal of Microelectromechanical Systems 2003, 12, 779-787.
    [46] M. Sasaki, S. Okamoto, Y. Hishikawa, S. Tsuda, S. Nakano, Solar energy materials and solar cells 1994, 34, 541-547.
    [47] Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, Y. Kuwano, Journal of applied physics 1991, 69, 508-510.
    [48] Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Japanese Journal of Applied Physics 1991, 30, 1008.
    [49] 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市, 2002.
    [50] Sinton Consulting, WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual.
    [51] R. A. Sinton, A. Cuevas, Applied Physics Letters 1996, 69, 2510-2512.
    [52] D. Macdonald, R. A. Sinton, A. Cuevas, Journal of Applied Physics 2001, 89, 2772-2778.
    [53] M. Jung, A. Okada, T. Saito, T. Suemasu, C.-Y. Chung, Y. Kawazoe, N. Usami, Japanese Journal of Applied Physics 2011, 50, 04DP02.

    QR CODE