簡易檢索 / 詳目顯示

研究生: 楊曉韻
Siao-Yun Yang
論文名稱: 轉印氧化銦錫薄膜於有機電子材料之研究
Fabrication and Study of the Transferable ITO Layer on Organic Electronics
指導教授: 戴 龑
Yian Tai
口試委員: 朱 瑾
Jinn P. Chu
王澤元
none
陳銘崇
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 115
中文關鍵詞: 氧化銦錫轉印濺鍍
外文關鍵詞: Indium tin oxide, transfer, sputter
相關次數: 點閱:274下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用射頻電漿濺鍍沉積氧化銦錫(ITO)薄膜於水溶性高分子polystyrene sulfonate (PSS)上,以翻膜轉印之技術將ITO薄膜轉移至有機高分子材料表面,作為有機光電元件之透明電極,如此可避免高能量濺鍍粒子轟擊高分子表面導致膜層受損。
    藉由改變濺鍍功率、工作壓力、距離、溫度等參數,本研究得到具備片電阻低於10Ω/sq,並於可見光範圍內達到80%以上之穿透率,XRD分析中顯示薄膜結晶方向為(222)、(400)、(622)之最佳光電特性之ITO薄膜。本研究改良傳統翻膜技術,以二次轉印法將ITO轉印至TFT元件介電層PMMA上,其轉印前後之薄膜特性十分相近,表示二次轉印法可有效完整轉移薄膜。
    最後利用二次轉印法將ITO轉印至TFT元件上作為電極並測試,觀察到於某些條件下,以轉印ITO作為電極之TFT其on-off ratio與鋁電極TFT差異不大,並且具備較高電容及遷移率。由此可知轉印ITO做為電極之應用是具備可行性的。


    ITO thin films are mainly fabricated on substrate using high vacuum plasma process such as magnetron sputtering. Although suitable for most of inorganic thin film substrate surfaces, magnetron sputtering could not be applied directly for organic thin films, in particular, the active layer of organic semiconductors, owing to their sensitivity towards high energy atoms employed in plasma sputtering process.
    In this study, first ITO thin films are sputtered on a sacrificial layer. In short working distance, high applied power and in situ 200°C annealing condition, we obtain an ITO film with low sheet resistance of 9.5Ω/sq and over 80% of the average transmittance in the visible region.
    Thereafter we introduce a modified transfer method to successfully transfer ITO thin films onto organic layer surface. The optical and electrical properties, crystallinity and morphology of transferred thin films are characterized by Hall measurement, XRD, SEM and AFM. The transferred ITO shows properties closed to original ITO. By this transfer method, ITO thin films could be utilized as top electrode on organic thin film transistor devices without damaging the organic dielectric layer. After testing, we found that transferred ITO electrode does work on TFT device. The study shows an easy and versatile method for deposition of ITO as top electrode on organic substrates.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIII 名詞縮寫表 XIV 第一章 緒論 1 1-1 前言 1 1-1-1 透明導電薄膜 1 1-1-2 氧化銦錫(ITO)薄膜 4 1-1-3 翻膜 7 1-2 研究目的 9 第二章 基本理論 10 2-1 銦錫氧化物(Indium Tin Oxide, ITO)介紹 10 2-2 濺鍍原理 12 2-2-1 電漿原理 12 2-2-2 直流濺鍍 14 2-2-3 射頻濺鍍 16 2-2-4 磁控濺鍍 16 2-3 薄膜成長機制 17 第三章 實驗 23 3-1 實驗藥品及耗材 23 3-2 實驗儀器及分析設備 24 3-3 實驗步驟 25 3-3-1 實驗流程 25 3-3-2 RF sputtering 實驗裝置圖 26 3-3-3 基板清洗 26 3-3-4 旋轉塗佈PSS 26 3-3-5 以射頻濺鍍系統沉積ITO薄膜 27 3-3-6 ITO薄膜之轉移方法 27 3-4 分析儀器簡介 28 3-4-1 接觸角測量儀(Contact angle, CA) 28 3-4-2 霍爾量測儀(Hall measurement) 28 3-4-3 場發射掃描式電子顯微鏡(field-emission scanning electron microscope, FESEM) 32 3-4-4 紫外光/可見光分光光譜儀(UV-visible Spectrometer) 33 3-4-5 X-ray繞射儀(x-ray diffractometer, XRD, D2) 34 3-4-6 原子力顯微鏡(Atomic Force Microscope) 35 第四章 結果與討論 36 4-1 不同工作壓力濺鍍ITO薄膜於玻璃基材上之性質探討 36 4-2 常溫下濺鍍ITO薄膜於PSS上之性質探討 42 4-2-1 工作壓力對濺鍍ITO電性之影響 42 4-2-2 PSS性質對濺鍍ITO電性之影響 44 4-2-3 工作距離對濺鍍ITO電性之影響 51 4-2-4 不同工作距離下改變瓦數對ITO電性之影響 57 4-3 熱處理對ITO薄膜性質之影響 62 4-3-1 退火條件對薄膜電性影響之探討 63 4-3-2 薄膜光學性質之探討 67 4-3-3 薄膜晶體結構與表面型態之探討 69 4-4 膜轉移之特性分析 75 4-4-1 以翻膜方法轉印ITO薄膜於PMMA之研究 76 4-4-2 以撈膜方法轉印ITO薄膜於PMMA之研究 78 4-4-3 以二次轉移方法轉印ITO薄膜於PMMA之研究 82 4-5 應用 87 4-5-1 以撈膜轉印之ITO作為TFT電極 87 4-5-2 以二次轉印之ITO作為TFT電極 89 第五章 結論與未來展望 93 參考文獻 95

    [1] 楊明輝(2001)。金屬氧化物透明導電材料的基本原理。工業材料,179,134。
    [2] 曲喜新、楊邦朝、姜節儉、張懷武(1996)。電子薄膜材料,北京科學出版社出版。
    [3] C.H. Lee & C.S. Huang. (1994). Materials Science and Engineering B22, 233-240.
    [4] ZB Zhou, RQ Cui, QJ Pang, YD Wang, FY Meng, TT Sun, ZM Ding & XB Yu. (2001). Applied Surface Science, 172 (3), 245-252
    [5] H. Kobayashi, T. Ishida, K. Nakamura, Y. Nakato & H. Tsubomura. (1992). Appl. Phys, 72, 5288.
    [6] I.A. Rauf, J. (1996). Appl. Phys. 79(8), 15, 4057-4065.
    [7] Y. Djaoued, VuHong Phong, S. Badilescu, P.V. Ashrit, Fernand E. Girouard & Vo-Van Truong, (1997). Thin Solid Films, 293, 108-112.
    [8] Swon-soon Kim, Sw-Young Choi, Chan-Gyung Park & Hyeon-Woo Jin. (1999). Thin Solid Films, 347, 108-112.
    [9] Jian Liu, E. Radlein & G.H. Frischat. (1999). Phys. Chem. Glasses, 40 (5), 277-281.
    [10] C.H. Lee & C.S. Huang. (1994). Materials Science and Engineering, B22, 233-240.
    [11] E. Benamar, M. Rami, C. Messaoudi, D. Sayah & A. Ennaoui. (1996). Solar Cells, 43, 37-45.
    [12] W. Wu & B. Chiou. (1993). Appl. Surf. Science, 68, 497.
    [13] C. Choi, K. No, W. Lee, H. Kim, S. Jung, W. Lee, W. Kim, S. Kim & C. Yoon. (1995). Thin Solid Films, 258, 274.
    [14] T.J. Vink, W.Walrave, J.L.C. Daams, P.C. Baarslag & J.E.A.M. van den Meerakker. (1995). Thin Solid Films, 266, 145.
    [15] T. Maruyama & K. Fukui. (1999). Appl. Phys,.70, 3848.
    [16] H. Iida, T. Mishuku, A. Ito & K. Kato. (1988). Solar Energy Materials, 17, 407.
    [17] L. J. Meng & M. P. dos Santos. (1994). Vaccum, 45, 1191.
    [18] G. Sanon, R. Rup & A. Mansingh. (1990). Thin Solid Films, 190, 287
    [19] Y. Liu, W. Zhu, O. K. Tan, X. Yao & Y. Shen. (1996). Materials Science: Materials in Electronics, 7, 279.
    [20] Q. Wei, S. Miyanishi, K. Tajima & K. Hashimoto. (2009). Applied Materials & Interfaces, 1, 2660.
    [21] A.Tada, Y. Geng, Q. Wei, K. Hashimoto & K. Tajima. (2011). Nature Materials, 10, 450.
    [22] N. Nadaud, N. Lequeux, M. Nanot, J. Jove & T. Roisnel. (1998). Journal of Solid State Chemistry, 135, 140.
    [23] A. J.Steckl & G. Mohammed. (1980). Applied Physics, 51, 3890.
    [24] M. Quaas, H. SteVen , R. Hippler & H. WulV. (2000). Surface Science, 790, 454.
    [25] C. C. Fan John & J. Bachner Frank. (1975). Electrochemical Society , 122, 1719.
    [26] F. Wu & B. S. Chiou. (1994). Thin Solid Films, 247, 201.
    [27] 高正雄(1999),超LSI時代─電漿化學,復漢出版社。
    [28] M. Ohring (1992). The materials science of thin films. Boston: Academic Press.
    [29] A. Anders. (2010). Thin Solid Films, 518( 15), 4087- 4090
    [30] 施敏、李明逵、曾俊元(民102年)。半導體元件物理與製作技術(第三版,初版)。新竹市國立交通大學出版社。
    [31] John F. Moulder. (1995). Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation.
    [32] M. Nisha, S. Anusha, Aldrin Antony, R. Manoj & M. K. Jayaraj. (2005). Appl. Surf. Sci. 252, 1430.
    [33] 周安琪。薄膜材料。徐氏基金會。
    [34] B. D. Cullity & S. R. Stock. (2001). Elements of X-Ray Diffraction, 3 edition. Upper Saddle River, NJ: Prentice Hall.
    [35] 陳柏菁(2000)。應用於平面顯示器之ITO透明電極。光訊(85期)。
    [36] T. Smoss. (1954). Proceedings of the Physical Society, B 67, 755.
    [37] A.K. Kulkarni, K.H. Schulz, T-S. Lim & M. Khan. (1997). Thin Solid Films, 308–309, 1–7.
    [38] El Akkad, M. Marafi, A. Punnoose & G. Prabu. (2000). Physica status solidi (a), 177, 445.
    [39] S. K. Choi & J. I. Lee. (2001). Vacuum Science & Technology A, 19(5), 2043-2047.
    [40] C.V.R. V. Kumar & A. Mansingh. (1989). Applied Physics, 65(3), 1270-1280.

    QR CODE