簡易檢索 / 詳目顯示

研究生: 楊承頤
Cheng-Yi Yang
論文名稱: 以低壓化學氣相沉積系統於矽基板製備石墨烯薄膜
Growth of Graphene on Silicon Substrate by Low-Pressure Chemical Vapor Deposition System
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 陳京玉
蔡孟霖
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 石墨烯氮化鎵化學氣相沉積高電子移動速度電晶體類鑽碳
外文關鍵詞: Graphene, GaN, CVD, HEMT, DLC
相關次數: 點閱:259下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氮化鎵於矽基板上成長時,因晶格不匹配與熱膨脹係數差異引入應力,造成高密度差排缺陷,降低氮化鎵HEMT元件工作效能。本研究提出以石墨烯做為磊晶界面層,提升氮化鎵磊晶品質之方法。石墨烯是二維材料,垂直膜面方向上缺乏懸鍵、與其他物體僅以微弱的凡德瓦力鍵結,利用這項特性減緩基板與氮化鎵間交互作用。研究中採用二種方式於矽基板上成長石墨烯薄膜:(1)鎳薄膜催化類鑽碳之固態碳源合成法 (2)銅薄膜催化甲烷之氣態碳源合成法。方法(1)實驗結果發現,(a)鎳薄膜厚度增加會使生成之石墨烯層數上升,但過薄的鎳會因除潤現象而在高溫下瞬間形成粗糙表面,降低石墨烯品質。(b)石墨烯生成需適當持溫時間,成長時間過短薄膜成長不及而有較多缺陷,持溫過久則因金屬除潤產生粗糙表面導致品質下降。因實驗設備因素,研究中的類鑽碳層強度(硬度)不足,受金屬除潤影響嚴重,無法長時間維持平整表面以成長高品質石墨烯。以此法處理的矽基板實際氮化鎵磊晶結果並不理想,推測是因為石墨烯層數過厚、品質與表面形貌不佳而沒有發揮預期的效果。改以方法(2)成長之石墨烯品質大幅提升,不過在較高的溫度與較長的成長時間下容易生成皺摺、碳粒聚集等表面現象使ID/IG比上升。方法(2)製備的石墨烯樣品具有較佳表面平整度,拉曼光譜I2D/IG比可達2,2D band半高寬39.4 cm-1,為1~2層的石墨烯。


High density of threading dislocations in GaN thin films which generated from a large lattice mismatch and thermal expansion coefficient between GaN and Si substrate degenerate the GaN based HEMTs. It is well known that the graphene exhibits a lot of excellent structural properties such as a 2 dimensional material with a weak van der Waals interaction between neighbor layers. In this study, graphene interlayer is embedded to GaN and Si substrate in order to overcome the lattice mismatch issue.
There are two methods to synthesize graphene interlayer on Si substrate: (1) Graphene prepared by nickel-catalyzed using solid-state carbon source diamond-like carbon (DLC); (2) Graphene prepared by copper-catalyzed using methane precursor. The experimental results indicated that the layer number of graphene increases with increasing thickness of Ni catalyst layer. In addition, the rough surface morphology and poor material quality of graphene can be found due to dewetting behavior when thickness of Ni layer smaller than 5 nm. It is noted that a lot of non-regular concaved hole on the silicon substrate which generated from removing Ni-Si nanorods when graphene processing time more than 30 minutes. Thus, prepared hard DLC layer is a crucial work for further improve the material quality and surface morphology of graphene layer on Si substrate.
Finally, synthesized graphene by methane precursor using Cu catalytic technique was used to prepared high material quality graphene on SiO2/Si substrate. According to Raman spectra, a single-layer graphene with a I2D/IG of 2 and 2DFWHM of 39.4 cm-1 can be achieved in this study. The experimental results also indicated that growth temperature > 1000 oC and/or processing time > 10 minutes may induce carbon clusters and resulting a wrinkles graphene.

摘要 ABSTRACT 致謝 目錄 圖表目錄 第一章、序論 1.1 前言 1.2 動機與目的 第二章、文獻回顧 2.1 石墨烯製備方法 2.1.1 機械剝離法 2.1.2 氧化石墨還原法 2.1.3 SiC外延生長法 2.1.4 化學沉積法 2.2 石墨烯上成長氮化鎵薄膜 第三章、 實驗方法與設備儀器 3.1 實驗流程 3.2 實驗設備簡介 3.2.1 射頻電漿化學氣相沉積系統 3.2.2 熱蒸度系統 3.2.3 低壓化學氣相沉積系統 3.2.4 拉曼光譜儀 第四章、 結果與討論 4.1 以鎳金屬催化類鑽碳成長石墨烯於矽基板 4.1.1 鎳金屬層膜厚對石墨烯品質的影響 4.1.2 成長持溫時間對石墨烯品質的影響 4.2 以銅金屬催化甲烷成長石墨烯於二氧化矽基板 4.2.1 成長溫度對石墨烯品質的影響 4.2.2 成長時間對石墨烯品質的影響 4.3 氮化鎵磊晶於六吋石墨烯/矽基板 第五章、 結論 參考文獻

[1] M. Rais-Zadeh, V.J. Gokhale, A. Ansari, M. Faucher, D. Theron, Y. Cordier, L. Buchaillot, Gallium Nitride as an Electromechanical Material, Journal of Microelectromechanical Systems, 23 (2014) 1252-1271.
[2] K. Fogarty, Semiconductor Engineering(2019), GaN Versus Silicon For 5G. Retrieved from https://semiengineering.com/gan-versus-silicon-for-5g/ (April 22, 2020)
[3] GaN to grow at 9% CAGR to over 18% of RF device market by 2020, Semiconductor Today, 9 (2014) 122-123.
[4] F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, 56 (1997) 10024-10027.
[5] C. Kisielowski, O. Schmidt, J. Yang, Atomic Scale Aluminum and Strain Distribution in a Gan/AlxGa1−XN Heterostructure, Materials Research Society, 482 (1997) 369-374.
[6] E. Valcheva, T. Paskova, S. Tungasmita, P.O.Å. Persson, J. Birch, E.B. Svedberg, L. Hultman, B. Monemar, Interface structure of hydride vapor phase epitaxial GaN grown with high-temperature reactively sputtered AlN buffer, Applied Physics Letters, 76 (2000) 1860-1862.
[7] L. Hsu, W. Walukiewicz, Effects of piezoelectric field on defect formation, charge transfer, and electron transport at GaN/AlxGa1-xN interfaces, Applied Physics Letters, 73 (1998) 339-341.
[8] N. Kaminski, O. Hilt, SiC and GaN devices – wide bandgap is not all the same, IET Circuits, Devices & Systems, 8 (2014) 227-236.
[9] M.K. Sunkara, S. Sharma, R. Miranda, G. Lian, E.C. Dickey, Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method, Applied Physics Letters, 79 (2001) 1546-1548.
[10] G.J. Syaranamual, W.A. Sasangka, R.I. Made, S. Arulkumaran, G.I. Ng, S.C. Foo, C.L. Gan, C.V. Thompson, Role of two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistor (HEMT) ON-state degradation, Microelectronics Reliability, 64 (2016) 589-593.
[11] Y. Cai, C. Zhu, L. Jiu, Y. Gong, X. Yu, J. Bai, V. Esendag, T. Wang, Strain Analysis of GaN HEMTs on (111) Silicon with Two Transitional AlxGa1-xN Layers, Materials (Basel), 11 (2018) 1968.
[12] V. Kumaresan, L. Largeau, A. Madouri, F. Glas, H. Zhang, F. Oehler, A. Cavanna, A. Babichev, L. Travers, N. Gogneau, M. Tchernycheva, J.C. Harmand, Epitaxy of GaN Nanowires on Graphene, Nano Letters, 16 (2016) 4895-4902.
[13] J. Kim, C. Bayram, H. Park, C.W. Cheng, C. Dimitrakopoulos, J.A. Ott, K.B. Reuter, S.W. Bedell, D.K. Sadana, Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene, Nature Communications, 5 (2014) 4836.
[14] K.T. Chan, J.B. Neaton, M.L. Cohen, First-principles study of metal adatom adsorption on graphene, Physical Review B, 77 (2008) 235430.
[15] S.W. Hwang, S.-H. Choi, Successful Fabrication of GaN Epitaxial Layer on Non-Catalytically-grown Graphene, Bulletin of the Korean Chemical Society, 37 (2016) 1004-1009.
[16] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666.
[17] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.
[18] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature, 490 (2012) 192-200.
[19] D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V. Yu, Experimental Review of Graphene, ISRN Condensed Matter Physics, 2012 (2012) 1-56.
[20] A.E.F. Oliveira, G.B. Braga, C.R.T. Tarley, A.C. Pereira, Thermally reduced graphene oxide: synthesis, studies and characterization, Journal of Materials Science, 53 (2018) 12005-12015.
[21] S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, 5 (2010) 574-578.
[22] X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, Large-area graphene single crystals grown by low- pressure chemical vapor deposition of methane on copper, Journal of the American Chemical Society, 133 (2011) 2816-2819.
[23] D.A. Brownson, C.E. Banks, The electrochemistry of CVD graphene: progress and prospects, Physical Chemistry Chemical Physics, 14 (2012) 8264-8281.
[24] D.A.C. Brownson, C.E. Banks, The Handbook of Graphene Electrochemistry, (2014).
[25] W. Fang, A.L. Hsu, Y. Song, J. Kong, A review of large-area bilayer graphene synthesis by chemical vapor deposition, Nanoscale, 7 (2015) 20335-20351.
[26] J. Rostrupnielsen, Mechanisms of carbon formation on nickel-containing catalysts, Journal of Catalysis, 48 (1977) 155-165.
[27] H. Sojoudi, S. Graham, Transfer-Free Selective Area Synthesis of Graphene Using Solid-State Self-Segregation of Carbon In Cu/Ni Bilayers, ECS Journal of Solid State Science and Technology, 2 (2013) M17-M21.
[28] A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor, Y. Zhang, Direct chemical vapor deposition of graphene on dielectric surfaces, Nano Letters, 10 (2010) 1542-1548.
[29] C.Y. Su, A.Y. Lu, C.Y. Wu, Y.T. Li, K.K. Liu, W. Zhang, S.Y. Lin, Z.Y. Juang, Y.L. Zhong, F.R. Chen, L.J. Li, Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition, Nano Letters, 11 (2011) 3612-3616.
[30] J. Chen, Y. Wen, Y. Guo, B. Wu, L. Huang, Y. Xue, D. Geng, D. Wang, G. Yu, Y. Liu, Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates, Journal of the American Chemical Society, 133 (2011) 17548-17551.
[31] D. Wei, Y. Lu, C. Han, T. Niu, W. Chen, A.T. Wee, Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices, Angewandte Chemie International Edition, 52 (2013) 14121-14126.
[32] Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, J.M. Tour, Growth of bilayer graphene on insulating substrates, ACS Nano, 5 (2011) 8187-8192.
[33] Z. Peng, Z. Yan, Z. Sun, J.M. Tour, Direct growth of bilayer graphene on SiO(2) substrates by carbon diffusion through nickel, ACS Nano, 5 (2011) 8241-8247.
[34] W. Xiong, Y.S. Zhou, L.J. Jiang, A. Sarkar, M. Mahjouri-Samani, Z.Q. Xie, Y. Gao, N.J. Ianno, L. Jiang, Y.F. Lu, Single-step formation of graphene on dielectric surfaces, Advanced Materials, 25 (2013) 630-634.
[35] M. Zheng, K. Takei, B. Hsia, H. Fang, X.B. Zhang, N. Ferralis, H. Ko, Y.L. Chueh, Y.G. Zhang, R. Maboudian, A. Javey, Metal-catalyzed crystallization of amorphous carbon to graphene, Applied Physics Letters, 96 (2010) 063110.
[36] H.J. Kwon, J.M. Ha, S.H. Yoo, G. Ali, S.O. Cho, Synthesis of flake-like graphene from nickel-coated polyacrylonitrile polymer, Nanoscale Research Letters, 9 (2014) 618.
[37] K. Kumar, Y.-S. Kim, X. Li, J. Ding, F.T. Fisher, E.-H. Yang, Chemical Vapor Deposition of Carbon Nanotubes on Monolayer Graphene Substrates: Reduced Etching via Suppressed Catalytic Hydrogenation Using C2H4, Chemistry of Materials, 25 (2013) 3874-3879.
[38] F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, L.H. Chan, Thermal stability study of NiSi and NiSi2 thin films, Microelectronic Engineering, 71 (2004) 104-111.
[39] Z. Yan, G. Liu, J.M. Khan, A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors, Nature Communications, 3 (2012) 827.
[40] J.K. Choi, J.H. Huh, S.D. Kim, D. Moon, D. Yoon, K. Joo, J. Kwak, J.H. Chu, S.Y. Kim, K. Park, Y.W. Kim, E. Yoon, H. Cheong, S.Y. Kwon, One-step graphene coating of heteroepitaxial GaN films, Nanotechnology, 23 (2012) 435603.
[41] P. Gupta, A.A. Rahman, N. Hatui, M.R. Gokhale, M.M. Deshmukh, A. Bhattacharya, MOVPE growth of semipolar III-nitride semiconductors on CVD graphene, Journal of Crystal Growth, 372 (2013) 105-108.
[42] T. Araki, S. Uchimura, J. Sakaguchi, Y. Nanishi, T. Fujishima, A. Hsu, K.K. Kim, T. Palacios, A. Pesquera, A. Centeno, A. Zurutuza, Radio-frequency plasma- excited molecular beam epitaxy growth of GaN on graphene/Si(100) substrates, Applied Physics Express, 7 (2014) 071001.
[43] N. Han, T.V. Cuong, M. Han, B.D. Ryu, S. Chandramohan, J.B. Park, J.H. Kang, Y.J. Park, K.B. Ko, H.Y. Kim, H.K. Kim, J.H. Ryu, Y.S. Katharria, C.J. Choi, C.H. Hong, Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern, Nature Communications, 4 (2013) 1452.
[44] Q. Zeng, Z. Chen, Y. Zhao, T. Wei, X. Chen, Y. Zhang, G. Yuan, J. Li, Graphene- assisted growth of high-quality AlN by metalorganic chemical vapor deposition, Japanese Journal of Applied Physics, 55 (2016) 085501.
[45] H. Yoo, K. Chung, Y.S. Choi, C.S. Kang, K.H. Oh, M. Kim, G.C. Yi, Microstructures of GaN thin films grown on graphene layers, Advanced Materials, 24 (2012) 515-518.
[46] N. Nepal, V.D. Wheeler, T.J. Anderson, F.J. Kub, M.A. Mastro, R.L. Myers- Ward, S.B. Qadri, J.A. Freitas, S.C. Hernandez, L.O. Nyakiti, S.G. Walton, K. Gaskill, C.R. Eddy, Epitaxial Growth of III-Nitride/Graphene Heterostructures for Electronic Devices, Applied Physics Express, 6 (2013) 061003.
[47] R. Puybaret, G. Patriarche, M.B. Jordan, S. Sundaram, Y. El Gmili, J.-P. Salvestrini, P.L. Voss, W.A. de Heer, C. Berger, A. Ougazzaden, Nanoselective area growth of GaN by metalorganic vapor phase epitaxy on 4H-SiC using epitaxial graphene as a mask, Applied Physics Letters, 108 (2016) 103105.
[48] Z.Y. Al Balushi, T. Miyagi, Y.-C. Lin, K. Wang, L. Calderin, G. Bhimanapati, J.M. Redwing, J.A. Robinson, The impact of graphene properties on GaN and AlN nucleation, Surface Science, 634 (2015) 81-88.
[49] E. Zhao, Y. Xu, B. Cao, Z. Li, S. Yang, J. Wang, C. Wang, K. Xu, Microstructural and optical properties of GaN buffer layers grown on graphene, Japanese Journal of Applied Physics, 57 (2018) 085502.
[50] D.-H. Mun, H. Bae, S. Bae, H. Lee, J.-S. Ha, S. Lee, Stress relaxation of GaN microstructures on a graphene-buffered Al2O3substrate, Physica Status Solidi- Rapid Research Letters, 8 (2014) 341-344.
[51] T. Journot, H. Okuno, N. Mollard, A. Michon, R. Dagher, P. Gergaud, J. Dijon, A.V. Kolobov, B. Hyot, Remote epitaxy using graphene enables growth of stress- free GaN, Nanotechnology, 30 (2019) 505603.
[52] Y. Feng, X. Yang, Z. Zhang, D. Kang, J. Zhang, K. Liu, X. Li, J. Shen, F. Liu, T. Wang, P. Ji, F. Xu, N. Tang, T. Yu, X. Wang, D. Yu, W. Ge, B. Shen, Epitaxy of Single‐Crystalline GaN Film on CMOS‐Compatible Si(100) Substrate Buffered by Graphene, Advanced Functional Materials, 29 (2019) 1905056.
[53] J. Yu, Z. Hao, J. Wang, J. Deng, W. Yu, L. Wang, Y. Luo, Y. Han, C. Sun, B. Xiong, H. Li, Study on AlN buffer layer for GaN on graphene/copper sheet grown by MBE at low growth temperature, Journal of Alloys and Compounds, 783 (2019) 633-642.
[54] W.C. Ke, S.T. Tesfay, T.Y. Seong, Z.Y. Liang, C.Y. Chiang, C.Y. Chen, W. Son, K.J. Chang, J.C. Lin, Solid-State Carbon-Doped GaN Schottky Diodes by Controlling Dissociation of the Graphene Interlayer with a Sputtered AlN Capping Layer, ACS Applied Materials & Interfaces, 11 (2019) 48086-48094.
[55] J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets, Science, 315 (2007) 490-493.
[56] A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron– phonon coupling, doping and nonadiabatic effects, Solid State Communications, 143 (2007) 47-57.
[57] Y. Lan, M. Zondode, H. Deng, J.-A. Yan, M. Ndaw, A. Lisfi, C. Wang, Y.-L. Pan, Basic Concepts and Recent Advances of Crystallographic Orientation Determination of Graphene by Raman Spectroscopy, Crystals, 8 (2018) 375.
[58] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters, 97 (2006) 187401.
[59] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Physics Reports, 473 (2009) 51-87.
[60] Z. Tu, Z. Liu, Y. Li, F. Yang, L. Zhang, Z. Zhao, C. Xu, S. Wu, H. Liu, H. Yang, P. Richard, Controllable growth of 1–7 layers of graphene by chemical vapor deposition, Carbon, 73 (2014) 252-258.
[61] Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small, 6 (2010) 195-200.
[62] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, 53 (1970) 1126-1130.
[63] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhães-Paniago, M.A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Physics Letters, 88 (2006) 163106.
[64] A. Stafiniak, J. Prazmowska, W. Macherzynski, R. Paszkiewicz, Nanostructuring of Si substrates by a metal-assisted chemical etching and dewetting process, RSC Advances, 8 (2018) 31224-31230.
[65] N.P. Dasgupta, S.C. Xu, H.J. Jung, A. Iancu, R. Fasching, R. Sinclair, F.B. Prinz, Nickel Silicide Nanowire Arrays for Anti-Reflective Electrodes in Photovoltaics, Advanced Functional Materials, 22 (2012) 3650-3657.
[66] J. Kim, W.A. Anderson, Spontaneous nickel monosilicide nanowire formation by metal induced growth, Thin Solid Films, 483 (2005) 60-65.
[67] A.M. Edwards, R. Ledesma-Aguilar, M.I. Newton, C.V. Brown, G. McHale, Not spreading in reverse: The dewetting of a liquid film into a single drop, Science Advances, 2 (2016) e1600183.
[68] T. Niu, M. Zhou, J. Zhang, Y. Feng, W. Chen, Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene, Journal of the American Chemical Society, 135 (2013) 8409-8414.
[69] R.G. Van Wesep, H. Chen, W. Zhu, Z. Zhang, Communication: Stable carbon nanoarches in the initial stages of epitaxial growth of graphene on Cu(111), Journal of Chemical Physics, 134 (2011) 171105.
[70] A.R. Goñi, H. Siegle, K. Syassen, C. Thomsen, J.M. Wagner, Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN, Physical Review B, 64 (2001) 035205.
[71] Y. Feng, V. Saravade, T.F. Chung, Y. Dong, H. Zhou, B. Kucukgok, I.T. Ferguson, N. Lu, Strain-stress study of AlxGa1-xN/AlN heterostructures on c- plane sapphire and related optical properties, Scientific Reports, 9 (2019) 10172.
[72] H. Grille, C. Schnittler, F. Bechstedt, Phonons in ternary group-III nitride alloys, Physical Review B, 61 (2000) 6091-6105.

無法下載圖示 全文公開日期 2025/05/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE