簡易檢索 / 詳目顯示

研究生: 鄭鼎緯
Ding-Wei Zheng
論文名稱: 平板彈簧式微定位平台之開發
Development of leaf-spring type micro-positioning stage
指導教授: 謝宏麟
Hung-Lin Hsieh
口試委員: 林紀穎
Chi-Ying Lin
陳品銓
Pin-Chuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 86
中文關鍵詞: 定位平台壓電致動器平板彈簧奈米旋轉式平台
外文關鍵詞: Positioning stage, Piezoelectric auactor, Leaf spring, Nanometer, Rotation stage
相關次數: 點閱:289下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發一套以平板彈簧結構為設計概念的微定位平台,用以進行精密定位。研究中藉由調整所設計的平板彈簧結構模組間的擺放方式及位置,即可建構出不同定位性能的平板彈簧式微定位平台,使定位平台具備不同維度的定位能力。
    平板彈簧式微定位平台在定位過程中,會因平板彈簧結構產生非預期變形而造成微定位平台的位移損失。於研究中,我們建立了平板彈簧結構的模型,藉由田口法來針對平板彈簧結構進行最佳化設計,針對分析結果提出了最適合此平板彈簧式微定位平台的結構參數,可有效降低微定位平台於定位過程中所造成的非預期位移損失。透過靜態分析與Ansys Workbench軟體分析相互比較此板彈簧結構最佳化參數,即可驗證本研究設計之平板彈簧結構其正確性與可行性。而後將此正確的平板彈簧結構參數繪製加工圖,透過線切割加工機加工出實際平板彈簧結構,再藉由光學顯微鏡檢測加工平板彈簧結構之尺寸是否正確,以降低因加工所造成定位誤差。此外,本研究透過設計不同樣式的固定板與活動板,且與平板彈簧結構進行組裝,可分別建立了單維度、二維度與三維度的平板彈簧式微定位平台。
    另外,本研究使用精密雷射干涉儀做為定位平台之精密量測系統,搭配PID控制法對定位平台位移進行誤差補償,使得平板彈簧式微定位平台達到更精密的定位性能。為了驗證開發之平板彈簧式微定位平台的定位性能,分別給予定位平台不同大小的波型,驗證出各組定位平台的位移解析度與行程。由實驗結果可得知,此套利用平板彈簧開發的定位平台具有良好的效能,單維度定位平台其位移解析度約為10 nm及位移行程5 μm,另外二維度定位平台與三維度定位平台的位移解析度皆約為10 nm與0.1 μrad,其行程皆具有6.5 μm與250 μrad。而穩態誤差於單維度定位平台約為±20 nm,二維度定位平台分別約為±2 nm與±0.2 μrad,三維度定位平台分別約為±5 nm與±0.2 μrad。


    In this study, a micro positioning stage designed using leaf spring structure for displacement measurement is developed. By adjusting the placement and position of the leaf spring of the structure, micro positioning stage for different positioning capability can be constructed, granting the positioning stage different positioning degree-of-freedoms.
    The leaf spring structure will cause the loss of displacements during the positioning process of the leaf spring type positioning stage due to unpredictable deformation. By constructing the model of the leaf spring structure during the experiment, using Taguchi method to achieve best design, and finding the most suitable structural parameters for this leaf spring positioning stage, the loss of displacement can be effectively reduced. Also by stationary and Ansys Workbench analyzations, the leaf spring structure’s correctness and feasibility can be verified. The concept and parameters of the leaf spring structure is then processed into design blueprint and manufactured into real structure by WEDM(Wire cut Electrical Discharge Machining), as well as having its parameter verified with microscope to avoid manufacturing error. By designing and combining different platforms and springs, single axis, dual-axes and triple-axes leaf spring type micro positioning stage can be built.
    During the study, we use precision laser encoders, combining with PID controls, to perform error compensation for the positioning platforms to achieve better precision. In order to verify the designed leaf spring type positioning stage capability, the positioning stages are experimented with multiple different waveforms, verifying the displacement resolution and maximum distance of each system. From the experimental result, this spring platform structure has excellent measurement capability in all three positioning systems. In single axis, the resolution of the displacement is 10 nm with the maximum distance of 5 μm, while the duel-axes and tri-axes systems’ resolutions of displacements are 10 nm and 0.1 μrad, with the maximum distances of 6.5 μm and 250 μrad. The steady state error is ±20 nm in single axis, ±2 nm and ±0.2 μrad in duel-axes, and ±5 nm and ±0.2 μrad in tri-axes.

    目錄 摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 x 符號說明 xi 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究目的 13 1.4 論文架構 14 第二章 基礎理論 15 2.1 壓電致動器 15 2.1.1壓電效應 15 2.1.2溫度特性 16 2.1.3遲滯效應 17 2.1.4潛變現象 17 2.1.5極化現象 18 2.1.6不同負載下伸長量 18 2.2單維度定位平台之撓性結構 20 2.2.1鉸鏈式撓性結構 20 2.2.2平板式撓性結構 21 2.3多軸定位平台結構設計 22 2.3.1串聯式定位平台結構 23 2.3.2並聯式定位平台結構 23 2.4 小結 25 第三章 平板彈簧式定位平台設計與開發 26 3.1 平板彈簧式定位平台的設計概念與需求 26 3.1.1 定位平台初步設計 27 3.2 平板彈簧式壓電致動定位平台運動方程式推導 29 3.2.1 平板彈簧式單維度壓電致動定位平台動態與靜態分析 30 3.2.1 平板彈簧式二維度壓電致動定位平台動態與靜態分析 31 3.2.1 平板彈簧式三維度壓電致動定位系統動態與靜態分析 33 3.3 平板彈簧結構最佳化田口法參數設計 35 3.4 平板彈簧式定位平台模擬 39 3.4.1 共振頻率模擬 39 3.4.2 單維度定位平台最大應力與剛性強度模擬 40 3.4.3 多維度定位平台幾何關係模擬 41 3.5 小結 43 第四章 平板彈簧式定位平台系統驗證 44 4.1實驗架設 44 4.2精密位移量測儀 47 4.2.1 電容式位移感測器 47 4.1.2 準共光程外差式光柵干涉儀 48 4.3 控制系統 51 4.3.1 前饋控制器 52 4.3.2 PID控制器 54 4.3.3 位移轉換矩陣 55 4.4 小結 56 第五章 實驗結果與討論 57 5.1 遲滯模型測試與驗證 57 5.2 位移轉換矩陣實驗 58 5.2.1 雙軸定位系統位移矩陣轉換實驗 59 5.2.2三軸定位系統位移矩陣轉換實驗 59 5.3 單維度定位系統測試結果 59 5.3.1 單維度定位系統多波型定位實驗 60 5.3.2 單維度定位系統步階定位實驗 62 5.4 二維度定位系統測試結果 64 5.4.1 二維度定位系統Z軸向多波型定位實驗 65 5.4.2 二維度定位系統Z軸向步階定位實驗 66 5.4.3 二維度定位系統旋轉角多波型定位實驗 67 5.4.4 二維度定位系統旋轉角步階定位實驗 68 5.5 三維度定位系統測試結果 70 5.5.1 三維度定位系統Z軸向多波型定位實驗 71 5.5.2 三維度定位系統Z軸向步階定位實驗 72 5.5.3 三維度定位系統旋轉角多波型定位實驗 74 5.5.4 三維度定位系統旋轉角步階定位實驗 76 5.6 誤差與討論 79 第六章 結論與未來展望 81 6.1 結論 81 6.2 未來展望 82 參考文獻 83

    [1] 「2015年台灣重要產業技術發展藍圖ΙΙ」,工業技術研究院產業經濟與趨勢研究中心,2008。
    [2] 李興中,台灣在精密定位技術上之發展現況與研究,國立高雄第一科技大學,碩士論文,2012。
    [3] 杜光宗,精密定位技術及其設計技術,建宏出版社,1992。
    [4] 陳秉瑜,交流伺服馬達驅動器與整合式之介面設計,南台科技大學,碩士論文,2004。
    [5] 李玉山,蚇蠖蟲式定位平台的最佳化設計與分析,國立中興大學,碩士論文,2005。
    [6] E. Shamoto, T. Moriwaki, “Development of a walking drive ultraprecision position,” Pre. Eng. 20, pp.85-92, 1997.
    [7] P. E. Tener, R. B. Mrad, “A systematic procedure for the design of piezoelectric inchworm precision positioners,” IEEE-ASME T. MECH. 9, pp.427-435, 2004.
    [8] T. Higuchi , “Application of electromagnetic impulsive force to precision,” Second International Symposium of Robotics Research, pp.144-149, 1984.
    [9] T. Higuchi, Y.Yusof, M.Watanabe, “Micro Actuator Using Recoil of An Ejected Mass,” IEEE Micro Robots and Teleoperators Workshops, pp.16-21, 1987.
    [10] 口俊郎,渡辺正浩,工藤謙一,“圧電素子急速変形利用超精密位置決機構”,精密工学会誌,第54 巻11号,pp.2107-2112,1998。
    [11] Ch. Renner, Ph. Niedermann, A. D. Kent, and O. Fischer, “A VerticalPiezoelectric Inertial Slider” , Rev. Sci. Instrum 61, pp.965-967, 1990.
    [12] J. R. Matey, et.al, “Biomorh-Driven X-Y-Z translation stage for scanned image misroscopy,” Rev. Sci. 58, pp.567-570, 1987.
    [13] 謝士渠,壓電致動器應用在XYθz精密定位平台之設計與實驗,國立彰化師範大學,碩士論文,2000。
    [14] Chang, S. H., Tseng, C. K., and Chien, H. C., “An Ultra-Precision XYθZ Piezo-Micropositioner Part II: Experiment and Performance,” IEEE Transactions on Ultrasonics 46, pp. 906-912, 1999.
    [15] 張博懷,運用有限元素法設計單軸短行程微奈米定位系統,國立台灣科技大學,碩士論文,2006。
    [16] 許學豐,雙軸短行程微/奈米定位平台整合光纖干涉儀做閉迴路定位控制之研製,國立台灣科技大學,碩士論文,2007。
    [17] 廖述鐘,運用橋型放大機構設計單軸微/奈米定位平台,國立台灣科技大學,碩士論文,2008。
    [18] H. Huang, et al. “Analysis and experiments of a novel and compact 3-DOF precision positioning platform,” Journal of Mechanical Science and Technology 27, pp.3347-3356, 2013.
    [19] 吳宗龍,具位移放大機構的壓電致動微定位平台之設計與分析,國立中正大學,碩士論文,2005。
    [20] Zhang, D., et al., “Investigation of a 3-DOF micro-positioning table for surface grinding,” International Journal of Mechanical Sciences 48, pp.1401-1408, 2006.
    [21] H. S. Kim, and Y. M. Cho, “Design and modeling of a novel 3-DOF precision micro-stage,” Mechatronics 19, pp.598-608, 2009.
    [22] H. Kim, J. Kim, D. Ahn, andD. Gweon, “ Development of a nanoprecision 3-DOF vertical positioning system with a flexure hinge,” Nanotechnology, IEEE Transactions 12, pp.234-245, 2013.
    [23] 朱移銘,中華民國專利,可回授控制之微定位平台,2007,專利公告號I286499。
    [24] 洪國凱,遊源成,劉冠志,黃加助,中華民國專利,超精密壓電定位平台,2012,專利公開號I373390。
    [25] 馮榮豐,范鈞婷,中華民國專利,一種串聯式三自由度微/奈米定位平台,專利公開號M303484。
    [26] Li, Yangmin, Jiming Huang, and Hui Tang, “A compliant parallel XY micromotion stage with complete kinematic decoupling,” IEEE T. Autom. Sci. Eng. 9 ,pp.538-553, 2012
    [27] 馮榮豐,胡勝淳,范鈞婷,中華民國專利,圓柱體三自由度微/奈米定位平台,專利公開號M282770。
    [28] Seo, Tae Won, et al., “Gain-scheduled robust control of a novel 3-DOF micro parallel positioning platform via a dual stage servo system,” Mechatronics 18, pp.495-505, 2008.
    [29] 閔繼江,王建國,曲東升,孫立宇,中華人民共和國專利,三自由度超精密定位平台,2003,專利公開號CN2580470Y。
    [30] 宗光華,葉樹生,陳瑜,趙波,中華人民共和國專利,三自由度超精密自動定位平台,2001,專利公開號CN2466769Y。
    [31] Dong, Wei, L. N. Sun, and Z. J. Du, “Design of a precision compliant parallel positioner driven by dual piezoelectric actuators,” Sensor. Actuat. A: Phy 135, pp.250-256,2007
    [32] Kang, D. S., et al, “A micro-positioning parallel mechanism platform with 100-degree tilting capability,” CIRP Ann-Manuf. Technol. 55, pp.377-380, 2006
    [33] PI, “Piezo, Nano, Positioning PI,”2005.
    [34] S. T. Smith ,and D. G. Chetwynd, “Foundations of ultraprecision mechanism design,” Taylor & Francis Books Ltd.,1998.
    [35] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司,2012。
    [36] Lion Precision, “Calibration Report,” 2009.
    [37] 謝宏麟,準共光程干涉術之新式大尺度定位平台之研究,國立中央大學,博士論文,2010.
    [38] Rakotondrabe, Micky, Cédric Clévy, and Philippe Lutz, “Complete openloop control of hysteretic, creeped and oscillating piezoelectriccantilevers,” IEEE Trans. ASE 7, pp:440-450, 2009.
    [39] C. Y. Lin, P. Y. Chen, “Hysteresis compensation and high-performance tracking control of piezoelectric actuators ,” Proc IMechE Part I: J. Systems and Control Eng. 226, pp.1050-1059, 2012.
    [40] 朱昱儒,整合外差式光柵干涉儀於精密定位平台之單軸直線度誤差補償,國立台灣科技大學,2014.
    [41] R. F. Fung, and W. C. Lin , “System identification of a novel 6-DOF precision positioning table, ” Sensor. Actuat. A: Phys. 150, pp.286-295, 2009.

    QR CODE