簡易檢索 / 詳目顯示

研究生: 胡銘顯
Ming-shien Hu
論文名稱: 低維光電晶體的合成與特性分析
Synthesis and Characterization of Low-Dimensional Optoelectronic Crystals
指導教授: 林麗瓊
Li-Chyong Chen
洪儒生
Lu-Sheng Hong
陳貴賢
Kuei-Hsien Chen
口試委員: 果尚志
none
馮哲川
none
吳季珍
none
陳永芳
none
黃鶯聲
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 183
中文關鍵詞:   磊晶 化學氣相沈積  一維奈米材料 碳化矽 表面電漿共振  奈米帶
外文關鍵詞:  surface plasmon resonance,   epitaxy, chemical vapor deposition,   one-dimensional nanomaterial,   silicon carbide,   nanobelt
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主題分為三部分: (1)以矽甲烷、乙炔為反應物的冷壁式低壓化學氣相沈積法於矽(111)基板表面碳化改質並成長碳化矽異質磊晶的探討與評估 ; (2)以氣流引導式化學氣相沈積法(GSCVD)及有機金屬化學氣相沈積法(MOCVD)成長一維氮化銦奈米帶 (InN nanobelt)及其光學性質的研究與探討 ; (3) 以微波電漿輔助化學氣相沈積法(MWCVD)成長一維介電材料包覆金顆粒複合奈米線的合成與光電性質的研究。
    第一部份的實驗中,不但成功的以乙炔於矽單晶Si(111)基板上碳化出無孔洞且表面平坦的碳化矽緩衝層,且也於此緩衝層表面成長出碳化矽的磊晶薄膜,我們發現於此一系統中碳化膜的表面粗糙度對於之後成長的碳化矽磊晶品質具有決定性的影響。此外也針對進料氣體通入反應器的方式,探討其對於碳化矽薄膜的成長模式及結晶性質的影響。我們發現,在室溫即通入氣體原料時,有助於薄膜以二維的模式成長出高品質的磊晶膜,而高溫時才通入原料的方式卻導致三維的成長,造成多晶薄膜的沈積。這乃是因為室溫通入氣體原料不僅在熱力學上有助於乙炔在已經碳化的矽表面上作化學性吸附,且有效的抑制了氣體原料的氣相成核,而導致薄膜呈現二維的成長模式。
    第二部份的實驗中,成功的以GSCVD法成長出一維的單晶氮化銦奈米帶。結構上我們利用氮化銦奈米帶表面能量的差異,解釋了奈米帶為何呈現特定晶面的帶狀表面形態。在光學性質方面以光激發光譜測量結果發現,以GSCVD法成長出的氮化銦奈米帶具有本質能隙(0.76 eV)的紅外光發光行為,其發光訊號的線寬為目前文獻值中最低(14meV)。由發光強度與激發功率成線性增加以及線寬與激發功率成線性減少的結果。我們推論出此一行為為增幅自發放射(amplified spontaneous emission)所造成。此外我們也成功的利用MOCVD法成長出氮化銦奈米帶。以穿透式電子顯微鏡分析其微結構發現,無論是成長方向或表面晶相皆與GSCVD法所成長的氮化銦奈米帶相同。值得一提的是,在改變激發能量密度(pumping intensity) 於20 K下的光激發光譜 (PL) 測量結果發現,在低激發能量密度下,PL為一半高寬 (linewidth) 較寬約 60nm的波形。隨著激發能量密度持續增加,於PL的光譜中觀察到發光強度與激發能量密度呈現一門檻行為 (threshold behavior),這是由於InN nanobelt的PL由自發性放射轉變為受激放射 (stimulated emission) 的緣故。 隨著激發能量密度更進一步增加至73kW/cm2時,此時PL由原本線寬為60nm的光譜出現了具有週期性且線寬銳減為只有2.3 nm的光譜,這意味著氮化銦奈米帶的PL由自發性發光(spontaneous emission)轉變為雷射。
    第三部份中,我們開發了微型反應器(microreactor)的方法,以MWCVD製程合成出一維介電材料包覆金顆粒之複合奈米線 (Au@SiOx nanowire),並利用穿透式電子顯微鏡觀察其成長的機制。此外發現,此一複合奈米線具有表面電漿共振吸收的特性。在不同波長的雷射光源照射時,此一複合奈米線於表面電漿共振吸收的頻率,呈現出強烈的波長選擇性以及可逆的光敏感特性,據此推測所觀察到的增強性光敏感行為可能是由於光誘導所形成之表面電漿子衰退為熱電子並經由介電層穿遂所造成。


    The subject of this research is focused on: (1) investigating the surface carbonization of Si(111) and the subsequent heteroepitaxial growth of SiC(111) using SiH4 and C2H2 as gaseous reactants in a cold-wall type low pressure chemical vapor deposition (LPCVD) reactor, (2) fabricating one-dimensional (1D) InN nanobelts by using gas-stream guided thermal CVD (GSCVD) and metal organic chemical vapor deposition (MOCVD), (3) synthesizing of photosensitive Au nanoparticle-embedded dielectric nanowires by microwave plasma assisted CVD.
    In the first part, carbonization of Si(111) surface was successfully achieved using C2H2 as a hydrocarbon reactant. The carbonized Si(111) surface was found to have void-free and flat surface. It was suggested that the surface roughness of the carbonized Si(111) layers plays a crucial role in determining the crystalline property of the subsequent SiC epilayers. Furthermore, we also investigated the effect of feeding process on the growth mode and crystalline property of SiC(111) films. The feeding of SiH4 and C2H2 at room temperature followed by a temperature ramping to 1523 K exhibited two-dimensional growth mode, while transformed into three-dimensional growth and showed polycrystalline property when the reactants were directly fed at 1523 K. Kinetic analysis of the film growth rate for the two reactant feeding procedures showed almost the same activation energy (54 Kcal/mol), indicating a gaseous decomposition of SiH4 to form SiH2 and H2 controls the overall film growth process. Nevertheless, feeding reactants from room temperature may favor the chemisorption of the reactants, facilitating the suppression of the gas-phase nucleation in the initial period of film growth, thus leading to two dimensional film growth.
    In the second part, single-crystalline indium nitride (InN) nanobelts were synthesized using Au as a catalyst by a guided-stream thermal chemical vapor deposition technique. The facet-selectivity of nanobelt was discussed in view of thermodynamic aspect and was attributed to the difference in surface energy of respective facet. Photoluminescence (PL) spectra of InN nanobelts showed a sharp infrared emission peak at 0.76 eV with a full width at half maximum of 14 meV, the smallest value in comparison with those of the InN epilayers reported to date. The integrated PL intensity was found to increase linearly with the excitation power, which confirms the observed PL is due to the direct band-to-band emission. The linewidth narrowing can be ascribed to amplified spontaneous emission as evidenced by a clear indication of linearly disproportional dependence of linewith on excitation power. On the other hand, we also successfully fabricated InN nanobelts by MOCVD technique. TEM characterization revealed that the growth direction and surface facets of MOCVD-grown InN nanobelts were identical to that grown by GSCVD. At low excitation intensity, the spectrum consisted of a single broad spontaneous emission band with a FWHM of (~60 nm) at 1594 nm. As the pumping intensity increases up to 73 kW/cm2, several sharp peaks emerged in the spectra between 1559 nm and 1644 nm. The typical linewidth of the observed sharp emission peaks at highest pumping intensity of 75.6 kW/cm2 was about 2.3 nm, nearly 25 times narrower than that (~60 nm) of spontaneous emission below the threshold. As the pumping power increases, a strong superlinear dependence of the emission intensity (inset of Fig. 4) and the rapid linewidth narrowing at high pumping power could be observed, suggesting a transition from spontaneous emission to stimulated emission in the MOCVD-grown InN nanobelts. Above the pumping power threshold, the emergence of multiple sharp peaks represented different lasing modes with strong coherent feedback at wavelength between 1559 nm and 1644 nm.
    In the final part, we present the use of micro-reactor approach for fabricating self-organized photosensitive Au nanoparticle chain encapsulated by dielectric nanowire in a MWCVD system. The growth mechanism of the hybrid nanowires was unveiled by TEM characterization. It was found that the hybrid nanowire exhibits pronounced surface plasmon resonance absorption. More remarkably, a strong wavelength-dependent and reversible photoresponse has been demonstrated in a two-terminal device using an ensemble of Au nanopeapodded silica nanowires under light illumination, while no photoresponse was observed for the plain silica nanowires. The enhancement of photoresponse is attributed to the generation of hot electrons due to the decay of surface plasmon polariton followed by the drift or diffusion to the dielectric nanowire and tunnel to the conuterelectrode.

    Table of Contents Chapter 1: Introduction and Literature Review 1.1Chemical Vapor Deposition (CVD)……………………………………………….1 1.1-1 Low Pressure CVD………………………………………………………….2 1.1-2 Metal Organic CVD (MOCVD)…………………………………………….3 1.1-3 Microwave Plasma CVD (MWCVD)……………………………………….5 1.2Fabrication of 3C-SiC……………………………………………………………..7 1.2-1 Introduction and Background Information of SiC…………………………..9 1.2-2 SiC growth techniques……………………………………………………..10 1.2-2a Sublimation method………………………………………………..10 1.2-2b Molecular Beam Epitaxy (MBE)…………………………………..12 1.2-2c Chemical Vapor Deposition (CVD)………………………………..13 1.2-3 Technical Challenge of SiC/Si heterepitaxy by CVD……………………...18 1.3One-dimensional (1D) Nanomaterials…………………………………………....21 1.3-1 Overview of Synthetic Approaches for 1D Nanomaterials………………...23 1.3-1a Vapor-phase Growth………………………………………………..23 1.3-1b Template-based Synthesis………………………………………….28 1.3-1c Solution-based Method…………………………………………….30 1.3-1d Other Techniques…………………………………………………..32 1.4 Optical Properties of 1D Nanostructures…………………………………………35 1.4-1 Surface Plasmon Resonance……………………………………….............35 1.4-2 Lasing Action in Semiconductor Nanowires………………………………44 Reference……………………………………………………………………………..47 Chapter 2: Experimental Section…………………………………………....54 2.1Experimental Apparatus…………………………………………………...54 2.1-1. LP-RTCVD for 3C-SiC(111)/Si(111) heteroepitaxy………………………54 2.1-2. Homemade MOCVD system for InN nanobelt growth…………………...55 2.1-3. Schematic apparatus of MWCVD system (AsTex 5 kW) for hybrid peapod nanowire growth…………………………………………………………56 2.2 Experimental procedure…………………………………………………..57 2.2-1 CVD-3C-SiC epitaxial growth…………………………………………….57 2.2-2 MOCVD-InN nanobelt growth…………………………………………....58 2.2-3 MWCVD-hybrid nanowire growth……………………………………....59 2.3 Characterization Instrumentation 2.3-1 Scanning Electron Microscopy (SEM)…………………………………...60 2.3-2 Atomic Force Microscopy (AFM)………………………………………..61 2.3-3 Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Analysis (EDS)…………………………………………………………...62 2.3-4 X-ray Diffraction (XRD)………………………………………………....63 2.3-5 X-ray Photoelectron Spectroscopy (XPS)………………………………..64 2.3-6 Fourier Transform Infrared Spectroscopy (FT-IR)……………………….65 2.3-7 Raman Sptectroscopy…………………………………………………….66 2.3-8 Photoluminescence Spectroscopy………………………………………..68 2.3-9 Cathodoluminescence Spectroscopy……………………………………..69 2.3-10 Ultraviolet-visible Absorption Spectroscopy (UV-vis)………………….70 2.3-11 Photoresponse Measurement…………………………………………....72 Reference………………………………………………………………………..73 Chapter 3 CVD-SiC(111)………………………………………………………74 Part I : Surface Carbonization of Si(111) by C2H2 and the Subsequent SiC(111) Epitaxial Growth from SiH4 and C2H2………………74 3.1 Background Information and Motivation……………………………………....74 3.2 Results and Discussions………………………………………………………..77 3.2-1 Surface Carbonization of Si(111)………………………………………..77 3.2-1a Variation of surface roughness at various carbonization times ……………………………………………………………………………79 3.2-1b Variation in surface bonding state at various carbonization times ……………………………………………………………………………80 3.2-1c Estimation of the SiC buffer layer thickness……………………...83 3.2-1d Surface carbonization mechanism of Si(111)………………….....85 3.2-2 Deposition of SiC Epilayers……………………………………………..87 3.3 Conclusions………………………………………………………………….....91 Reference…………………………………………………………………………...92 Part II : Chemical vapor deposition of 3C-SiC(111) films on Si(111) using SiH4/C2H2/H2 reaction system: Effect of the reactant feeding procedure on SiC epitaxy……………………………....93 3.4 Background Information and Motivation………………………………….....93 3.5 Results and Discussions………………………………………………………94 3.5-1 Characterizations of 3C-SiC(111) films………………………………..94 3.5-2 Growth Kinetics: growth rate as a function of substrate temperature, partial pressure of silane, acetylene and hydrogen flow rate……..100 3.5-3 Microstructural analysis of 3C-SiC(111) films………………………..106 3.6 Conclusions………………………………………………………………....111 Reference………………………………………………………………………….112 Chapter 4: Growth, Characterization and Optical Properties of Single-crystalline InN nanobelts by Gas-stream Guided Thermal Chemical Vapor Deposition (GSCVD) and Metal Organic Chemical Vapor Deposition (MOCVD)………………………………………………..113 Part I: GSCVD-grown InN Nabobelts……………………………………113 4.1 Motivation…………………………………………………………………….113 4.2 Results and Discussions………………………………………………………115 4.2-1 Morphology of InN Nanobelts………………………………………..115 4.2-2 XRD and Raman Spectroscopy……………………………………….117 4.2-3 Microstructural Observation and Compositional Characterization…...120 4.2-4 Self-selectivity of Well-defined Facet on InN Nanobelts…………......123 4.2-5 Sharp Infrared Emission from InN nanobelts…………………………126 4.3 Conclusions…………………………………………………………………...130 Reference…………………………………………………………………………131 Part II: MOCVD-grown InN Nabobelts……………………………….....133 4.4 Motivation…………………………………………………………………….133 4.5 Result and Discussions……………………………………………………......135 4.5-1 Morphology of InN Nanobelts………………………………………...135 4.5-2 XRD Results…………………………………………………………..137 4.5-3 TEM Characterization……………………………………...................139 4.5-4 Lasing Action in MOCVD-grown InN Nanobelts…………………….141 4.6 Conclusions……………………………………………………………….......145 Reference………………………………………………………………………….146 Chapter 5: Fabrication and Characterization of Hybrid Peapod Nanowires and its Surface Plasmon Resonance Induced Photoreponse Behavior……………………………………………………….148 5.1 Motivation…………………………………………………………………….148 5.2 Results and Discussions………………………………………………………150 5.2-1 Microreactor design for composite nanowire growth…………………..150 5.2-2 Microstructure and chemical composition……………………………...156 5.2-3 Growth mechanism of Au-nanopeapodded silica nanowires…………...159 5.2-4 Origin of oxygen………………………………………………………..162 5.2-5 Cathodoluminescence spectra of Au-nanopeapodded silica nanowires ………………………………………………………………………………...167 5.2-6 Surface plasmon resonance absorption of Au-nanopeapodded silica nanowires………………………………………………………………169 5.2-7 SPR-induced photoresponse from Au-nanopeapodded silica nanowires ………………………………………………………………………….172 5.2-8 Applicability of the Microreactor Approach……………………………176 5.3 Conclusions…………………………………………………………………...178 Reference………………………………………………………………………….180 Chapter 6: Summary and Outlook………………………………………...182 Figure Index Fig. 1.1 Fig. 1.1 The most commonly seen SiC polytypes projected onto (11 0) plane. ……………………………………………………………………...9 Fig. 1.2 Fig. 1.2 Simplified schematic illustration showing (a) the formation of atomic-scale steps by off-angle polishing, and (b) the step-free surface after SiC growth.…………………………………………………………15 Fig. 1.3 The most commonly seen defects in heteroepitaxy of 3C-SiC on 6H- or 4H-SiC (a) double-positioning boundary (DPB) defect, and (b) stacking fault (SF) in 3C-SiC……………………………………………………...17 Fig. 1.4 (a) Schematic diagram showing the nanowire growth based on VLS mechanism.(b) Binary phase diagram of Au and Ge…………………….27 Fig. 1.5 Schematic diagram showing the comparison of OAG and VLS growth...34 Fig. 1.6 Dispersion curve of surface plamon mode at a plane metal-dielectric interface. The behavior of plane electromagnetic wave is described by the dash line while the characteristic of surface plasmon is shown in the solid curve. Momentum mismatch is clearly seen between plane wave and surface plasmon at the same frequency…………………………………..40 Fig. 1.7 A schematic illustrates the excitation of the dipole surface plasmon oscillation. The electric field of an incoming light wave induces a polarization of the conduction electrons with respect to the much heavier ionic core of a spherical metal nanoparticle. In this manner a dipolar oscillation of the electrons is created…………………………………….41 Fig. 1.8 (a) Exticntion cross-section as a function of nanoparticle diameter. (b) Ratio of scattering to absorption cross-section as a function of nanoparticle diameter. (c) Calculated optical coefficient based on the dipole approximation method for a gold nanoparticle with a dimeter D = 40 nm. (d) D = 100 nm. The surrounding matrix is water. The obtained optical coefficient were divided by r2 to be dimensionless……………………..42 Fig. 1.9 (a) UV-vis absorption spectra of Au nanoparticles in different diameters within water matrix. (b) The plasmon linewidht as a function of nanoparticle diameter…………………………………………………….43 Fig. 2-1 LPRT-CVD (Low Pressure Rapid Thermal- Chemical Vapor Deposition System)……………………………………………………………………54 Fig. 2-2. Homemade MOCVD system for InN nanobelt growth…………………….55 Fig. 2-3 Schematic apparatus of MWCVD system (AsTex 5 kW) for hybrid peapod nanowire growth…………………………………………………………...56 Fig. 2-4. Experimental procedure for CVD-SiC/Si heteroepitaxy…………………...57 Fig. 2-5. Experimental procedure for MOCVD-InN nanobelt growth……………….58 Fig. 2-6 Experimental procedure for MWCVD-hybrid nanowire growth…………...59 Fig. 2-7 Energy level diagram for Raman scattering; (a) Stokes Raman scattering (b) anti-Stokes Raman scattering……………………………………………….67 Fig. 2.8 Schematic of electronic transition of ,  and n electrons……………….....71 Fig. 3-1 AFM images of Si(111) surface carbonized by C2H2 at 1343 K for different carbonization times of (a) 0 (after H2 surface cleaning process), (b) 2, (c) 5, (d) 8, and (e) 12, respectively……………………………………………...78 Fig. 3-2 Root mean square roughness (RMS) of the carbonized Si(111) surface as a function of carbonization time……………………………………………...79 Fig. 3-3 The C/Si atomic ratio of SiC buffer layer as a function of carbonization time………………………………………………………………………….81 Fig. 3-4 XPS Si 2p spectra for Si(111) surface carbonized at various times. (a) 2 min, (b) 5 min (c) 8 min, and (c) 12 min…………………………………………82 Fig. 3-5 Buffer layer thickness as a function of carbonization time………………....84 Fig. 3-6 Schematic of the Si(111) surface carbonization mechanism using C2H2 in a LPCVD reactor. The mechanism includes (a) formation of crystalline SiC precipitates during the final ramping period, (b) propagation of SiC precipitates at the initial 0-5 min carbonization stage, (c) lateral coalescence of SiC nuclei at the 5-8 min carbonization stage, and (d) segregation of carbon atoms on the SiC surface layer……………………………………..86 Fig. 3-7 XRD spectra of the SiC(111) films grown on Si(111) substrate. The experimental parameter is the initial surface carbonization time of (a) 5 min, (b) 8 min, and (c) 12 min. The SiC film growth was performed under a SiH4/C2H2 flow ratio of 0.43 in the presence of H2 at 1523 K……………..88 Fig. 3-8 Raman spectrum of the deposited SiC film growth on Si(111) with 8-min surface carbonization……………………………………………………….89 Fig. 3-9 Cross-sectional HRTEM image showing the SiC/Si interface……………..90 Fig. 3-10 The schematic diagram of temperature programs for 3C-SiC(111) films deposited on Si(111). (a) HT feeding procedure: After surface cleaning and carbonization, the substrate was kept at carbonization temperature of 1343 K in the presence of H2 for 5 min. SiH4 and C2H2 were then introduced at 1343 K followed by the temperature ramping up to 1523 K for film growth. (b) RT feeding procedure: All the experimental parameters were identical to HT feeding procedure except that the SiH4 and C2H2 were introduced into reactor at room temperature prior to film growth…………………...96 Fig. 3-11 SEM images of SiC(111) films deposited by (a) HT feeding and (b) RT feeding procedure, respectively. The SiC film growth was performed under a SiH4/C2H2 flow ratio of 0.43 in the presence of H2 at 1523 K…………..97 Fig. 3-12 XRD spectra of the SiC(111) films grown on Si(111) substrate by (a) HT feeding procedure and (b) RT feeding process, respectively. The growth of SiC films was performed at 1523 K for 90 min……………………….....98 Fig. 3-13 Raman spectra of 3C-SiC(111) films grown by (a) HT feeding and (b) RT feeding procedure……………………………………………………….....99 Fig. 3-14 RT feeding- derived Arrhenius plot showing the growth rate of 3C-SiC (111) film as a function of the reciprocal of the growth temperature. The growth of SiC(111) films were carried out under a SiH4/C2H2 flow ratio of 0.43 in the presence of H2 at 5 Torr by RT feeding procedure…………………...102 Fig. 3-15 The growth rate of SiC(111) films as a function of C2H2 partial pressure (PC2H2) at 1523 K by RT feeding procedure……………………………...103 Fig. 3-16. The growth rate of SiC films as a function of the partial pressure of SiH4 at 1523 K by RT feeding procedure………………………………………...104 Fig. 3-17 The growth rate of SiC(111) films as a function of H2 flow rate (PH2) at 1523 K by RT feeding procedure………………………………………………105 Fig. 3-18 TEM micrographs of 3C-SiC (111) films grown by different temperature procedure: (a) HT feeding and (b) RT feeding procedure……………….109 Fig. 3-19 The schematic illustrations showing the growth evolution of 3C-SiC (111) films by HT feeding procedure : (a) – (c) and RT feeding procedure: (d) – (f)………………………………………………………………………..110 Fig. 4-1 Typical FESEM images of InN nanobelts: a) Low-magnification SEM image. Inset shows the size distribution of InN nanobelts, b) High-magnification SEM image of the as-synthesized products. Inset reveals the belt shape of a single nanobelt……………………………...116 Fig. 4-2 XRD pattern of the as-prepared InN nanobelts………………………….118 Fig. 4-3 Typical Raman spectrum of InN nanobelts. (* represent the signal from Si substrate)………………………………………………………………..119 Fig. 4-4 (a, b) Low-magnification TEM images of InN nanobelts. (c) TEM image showing the presence of nanoparticle (Au-In alloy) attached at the growth front of a nanobelt; inset shows the EDX spectrum of the nanoparticles. (d) HRTEM image and corresponding SAED pattern taken from one nanobelt with [110] growth direction……………………………………………...121 Fig. 4-5 (a) TEM image of a single InN nanobelt and corresponding EELS mapping of In (b) and N (c) and O (d)………………………………………………122 Fig. 4-6 Unit cell model for hexagonal InN constructed by CERIUS2 software: (a) (001), (b) (1 0), and (c) (110). (d) Schematic diagram of the nanobelt crystallographic directions………………………………………………...125 Fig. 4-7 (a) Power-dependent PL spectra of InN nanobelts recorded using InGaAs detector at 20 K; inset shows the room-temperature PL spectrum at excitation power of 100 mW………………………………………………128 Fig. 4-8 Plot of integrated PL intensity and FWHM of emission peak as a function of excitation power (20 K)…………………………………………………...129 Fig. 4-9 (a) Low-magnification SEM image of as-synthesized InN nanobelts. (b) High-magnification SEM image of belt-like morphology showing well-defined facet………………………………………………………….136 Fig. 4-10 XRD result of InN nanobelts confirming the wurzite structure of InN nanobelts………………………………………………………………….138 Fig. 4.11 Microstructure of InN nanobelt. (a) The observation of bending coutour pattern in a single InN nanobelt. (b) HRTEM image of a single InN nanobelt and the corresponding SAD pattern. (c) Schematic diagram of the nanobelt crystallographic directions……………………………………………….140 Fig. 4.12 Power-dependent PL spectra of InN nanobelts grown on Si. Inset shows the integrated intensity dependence of excitation intensity………………….143 Fig. 4.13 Power-dependent PL spectra of InN nanobelt grown on SiNx-coated Si. Inset shows the typical threshold behavior of lasing action……………………144 Fig. 5-1 Schematic illustration of microreactor in sandwich-like configuration…...152 Fig. 5-2 Schematic picture of temperature program for composite nanowire growth……………………………………………………………………...153 Fig. 5-3 SEM image of hybrid nanowires. (a) SEI image (b) BEI image. Inset shows a nanowire composed of a peapod-like structure……………………………154 Fig. 5-4 Nanowire length as a function of growth time…………………………….155 Fig. 5-5 (a) TEM image of composite nanowires with nanoparticles embedded in the nanowire matrix. (b) The HRTEM image of the Au nanoparticle exhibiting an ellipsoidal shape with an aspect ratio of ~1.18. (c) shows the selected area diffraction pattern of Au nanoparticle. (d, e) EDX spectra of a composite nanowire taken at the shell and Au regions, respectively…………………157 Fig. 5-6 Typical XRD pattern of the composite nanowires………………………...158 Fig. 5-7 TEM images showing structural evolution with growth time of (a) 0, (b) 2, (c) 5, (d) 10, and (e) 20 min………………………………………………….161 Fig. 5-8 Surface morphology of Au-coated Si top cover following various growth time. (a) pristine Au-coated Si, (b) after first stage of hydrogen plasma treatment, (c) after 5 min growth, (d) after 10 min growth, and (e) after 20 min growth……………………………………………………………….163 Fig. 5-9 Surface morphologies of Au-coated Si(100) exhibit rough and porous nanostructures. (a) 70 nm-thick Au coated Si(100), (b) high-magnification image of (a), (c) 112 nm-thick Au coated Si(100), and (d) high-magnification image of (c)………………………………………….164 Fig. 5-10 XPS wide-scan spectra for Au-coated Si top covers. (a) With surface sputtering, (b) Without surface sputtering………………………………165 Fig. 5-11 Effect of Au-coated Si top cover on the formation of hybrid nanowries. (a-b) Schematic configuration of microreactors with Au-coated Si cover (a) and without Au-coated Si cover. (c-d) The corresponding SEM images of the product grown by (a) and (b), respectively………………………………166 Fig. 5-12 Temperature-dependent cathodoluminescence spectra of Au-nanopeapodded silica nanowires. Inset shows the corresponding FTIR spectrum………..168 Fig. 5-13 Optical absorption spectra for Au-filled silica nanowires (blue line), Au peapodded silica nanowires (red line) and plain silica nanowires (green line), respectively……………………………………………………………….170 Fig. 5-14 Room-temperature resistance response as a function of time to light illumination for plain sililica nanowires (upper part) and Au-nanppeapodded silica nanowires (lower part), respectively. Shaded (pink:  = 635 nm); (green:  = 532 nm); (purple:  = 405 nm) and unshaded regions mark the light-on and –off periods, respectively…….171 Fig. 5-15 Room-temperature resistance response as a function of time to light illumination at various excitation intensity for Au-nanppeapodded silica nanowires. Shaded (green:  = 532 nm) and unshaded regions mark the light-on and –off periods, respectively…………………………………...174 Fig 5.16 Excitation intensity dependent photoresponse measurement……………175 Fig. 5.17 Applicability of the microreactor technique to form other Au encapsulated dielectric nanowires. a, BEI image of Au filled SiNx nanotubes. b, TEM image of a single Au filled SiN nanotubes. c, TEM image shows the successful formation of Au nanopeapodded SiNx nanowire using SiH4, NH3 and H2 as reactant gases by microreactor technique. e-f, Electron energy-loss spectroscopy (EELS) line-scan profile across the nanocable along the indicated line (denoted as 1) in d, suggesting the nanocable composed of Au core with silicon nitride sheath. Clear evidence demonstrates the applicability of the abovementioned technique to produce Au nanoparticle embedded SiNx nanowires……………………………...177 Table Index Table 1.1 Physical properties of SiC in comparison with other semiconductor materials……………………………………………………………………

    1.R. F. Bunshah, Deposition Technologies for Films and Coatings: Developments and Applications, Noyes Publications, Park Ridge, NJ (1982).
    2.M. L. Hitchman, and K. F. Jensen, Chemical Vapor Deposition: Principles and Applications, Academic Press, London (1993).
    3.(a) D. Wang, and H. Dai, Angew. Chem. 114, 4977 (2002). (b) D. Wang, and H. Dai, Angew. Chem. Int. Ed. 41, 4783 (2002).
    4.D. Wang, R. Tu, L. Zhang, and H. Dai, Angew. Chem. Int. Ed. 44, 2 (2005).
    5.(a) H. M. Manasevit, Appl. Phys. Lett. 116, 1725 (1969). (b) H. M. Manasevit and W. I. Simpson, J. Electrochem. Soc. 12, 156 (1968).
    6.C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, K. S. Liu, Appl. Phys. Lett. 85, 6131 (2004).
    7.(a) H. Morkoc, Nitride Semiconductors and Devices, Springer-Verlag Berlin Heidelberg (1999). (b) A. G. Thompson, R. A. Stall and B. Kroll, Semiconductor Intern., 172 (1994).
    8.(a) S. W. Kim, S. Fujita, and S. Fujita, Appl. Phys. Lett. 86, 153119 (2005). (b) B. C. Kang, S. B. Lee, and J. H. Boo, Thin Solid Films 464, 215 (2004). (c) X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, Appl. Phys. Lett. 83, 5533 (2003). (d) J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005). (e) J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A. V. Nurmikko, C. Broadbridge, and A. Lehman, Appl. Phys. Lett. 86, 013105 (2005). (f) W. Seifert, M. Borgström, K. Deppert, K. A. Dick, J. Johansson, M. W. Larsson, T. Mårtensson, N. Sköld, C. P. T. Svensson, B. A. Wacaser, L. R. Wallenberg, L. Samuelson, J. Crystal Growth 272, 211 (2004).
    9.T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, and J. Denlinger and P. Yang, Nature Mater. 3, 524 (2004).
    10.(a) Y. Sun, Y. H. Cho, H. M. Kim, and T. W. Kang, Appl. Phys. Lett. 87, 093115 (2005). (b) H. M. Kim, Y. H. Cho, H. Lee, S. l. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059, (2004 ).
    11.(a) M. Umeno and S. Adhikary, Diamond & Related Materials 14 1973 (2005). (b) J. D. Houmes, and H. C. Z. Loye, Journal of Solid State Chemistry 130, 266 (1997). (c) J. D. Gu, and P. L. Chen, Thin Solid Films 498, 14 (2006)
    12.C. L. Sun, L. C. Chen, M. C. Su, L. S. Hong, O. Chyan, C. Y. Hsu, K. H. Chen, T. F. Chang, and L. Chang, Chem. Mater. 17, 3749 (2005).
    13.(a) L. C. Chen, C. Y. Wen, C. H. Liang, W. K. Hong, K. J. Chen, H. C. Cheng, C. S. Shen, C. T. Wu, and K. H. Chen, Adv. Funct. Mater. 12, 198 (2002). (b) F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. K. Kuo, S. W. Chang, and Y. F. Chen, W. K. Hong, H. C. Cheng, Appl.Phys. Lett. 76, 2631 (2000).
    14.P. L. Dreike, D. M. Fleetwood, D. B. King, D. C. Sprauer, and T. E.
    Zipperian, “An Overview of High-Temperature Electronic Device Technologies and Potential Applications”, IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, 17, 594 (1994).
    15.(a) J. B. Casady, and R. W. Johnson, “Status of Silicon Carbide (SiC) as a Wide-Bandgap Semiconductor for High-Temperature Applications: A Review”, Solid-State Electronics 39, 1409-1422 (1996). (b) S. Sriram et al., “SiC for Microwave Power Transistors”, Phys. Stat. Sol. (a) 162, 441 (1997).
    16.William F. Smith, Foundations of Materials Science and Engineering, 2nd ed, McGraw-Hill, (1994).
    17.J. D. Parsons, R. F. Bunshah, and O. M. Stafsudd, Solid State Technol. 133 (1985).
    18.M. Bhatnagar, B. J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993).
    19.M. H. Hong, A. V. Samant, and P. Pirouz, Philos. Mag. 80 (4), 919 (2000).
    20.A. R. Verma and P. Krishna (1966) Polymorphism and Polytypism in Crystals (New York:Wiley).
    21.H. Nagasawa, and K. Yagi, Phys. Stat. Sol. (b) 202, 335 (1997).
    22.(a) J. W. Palmour, H. S. Kong, R. F. Davis, J. Appl. Phys. 64, 2168 (1988). (b) R. J. Trewm, H. B. Yan, P. M. Mock, Proc. IEEE 79, 598, (1991).
    23.J. A. Lely : Ber Deut. Keram. Ges. 32, 229 (1955).
    24.D. L. Barrett and R. B. Campbell, J. Appl Phys. 38, 53 (1967).
    25.Tairo, Yu. M., and Tsvetkov, V. F., “General principals of growing large-size single crystals of various silicon carbide polytypes”, J. Cryst. Growth 52, 146 (1981).
    26.Yu. M Tairov and V. F. Tsvetkov, J. Cryst. Growth, 43, 209 (1978).
    27.Barrett, D. L., Seidensticker, R. G., Gaida. W., Hopkins, R. H., and Choyke, W. J., “Sublimation Vapor Transport Growth of Silicon Carbide”, Springer Proc. In Physics, v. 56, Eds. G. L. Harris, M. G. Spencer, and C. Y. Yang (Springer, Berlin, 1992) pp. 33-99.
    28.(a) P. G. Neudeck and J. A. Powell, IEEE Election Device Letter. 15, 63 (1994). (b) M. Tuominen, R. Yakimova, R. C. Glass, T. Tuomi, and E. Janzen, J. Cryst. Growth, 144, 267 (1994).
    29.http://www.cree.com/products/products.htm.
    30.V. F. Tsvetkov, S. T. Allen, H. S. Kong, and C. H. Jr. Carter, “Recent progress in SiC crystal growth”, Kyoto ICSCRM, pp. 107-112.
    31.(a) A. Fissel, B. Schroter, and W. Richter, Appl. Phys. Lett. 66, 3182 (1995). (b) L. B. Rowland, S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 62, 3333 (1993).
    32.H. Matsunami, Physica B 185, 65 (1993).
    33.E. Sacuma, S. Yoshida, H. Okumura, S. Wisawa, and K. Endo, Bull Electrotechnical Lab. 51, 12 (1987).
    34.D. J. Larkin, Mater. Res. Soc. Bull. 22, 36 (1997).
    35.(a) P. Liaw, and R. F. Davis, J. Electrochem. Soc. 132, 642 (1985). (b) K. Ikoma, M. Yamanaka, H. Yamaguchi, and Y. Shichi, J. Electrochem. Soc. 138, 3031 (1991). (c) P. Rai-Choudhury, and N. P. Formigoni, J. Electrochem. Soc. 116, 1440 (1969).
    36.(a) K. Teker, C. Jacob, J. Chung, M. H. Hong, Thin Solid Films, 371, 53 (2000). (b) Y. Avigal, M. Schieber, R. Levin, J. Cryst. Growth 24, 188 (1974).
    37.J. A. Powell, P. G. Nuedeck, A. J. Trunek, G. M. Beheim, L.G. Matus, R. W. Hoffman, and L. J. Keys, Appl. Phys. Lett. 77, 1499 (2000).
    38.(a) A. A. Lebedev, Semicond. Sci. Technol. 21, R17 (2006). (b) J. A. Powell, D. J. Larkin, and L. G. Matus, Appl. Phys. Lett. 56, 1442 (1990).
    39.(a) J. A. Powell, J. B. Petit, J. H. Edgar, Appl. Phys. Lett. 59, 183 (1991). (b) J.A. Powell, D.J. Larkin, L.G. Matus, W.J. Choyke, J.L. Bradshaw, L. Henderson, M. Yoganathan, J. Yang and P. Pirouz, Appl. Phys. Lett. 56 (14), 1353, (1990). (c) J.A. Powell, J.B. Petit, J.H. Edgar, I.G. Jenkins, L.G. Matus, W.J. Choyke, L. Clemen, M. Yoganathan, J.W. Yang and P. Pirouz, Appl. Phys. Lett. 59, (2), 183, (1991). (d) J.A. Powell, J.B. Petit, J.H. Edgar, I.G. Jenkins, L.G. Matus, J.W. Yang, P. Pirouz, W.J. Choyke, L. Clemen and M. Yoganathan, Appl. Phys. Lett. 59, (3), 333, (1991).
    40.K. Ikoma, M. Yamanaka, H. Yamaguchi and Y. Shichi, J. Electrochem. Soc. 138, 3028 (1991).
    41.S. Nishino, J. A. Powell, H. A. Will, Appl. Phys. Lett. 42, 124 (1983).
    42.J. A. Powell, L. G. Matus, M. A. Kuczmarski, J. Electrochem. Soc. 134, 1558 (1987).
    43.V. Cimalla, K. V. Karagodina, J. Pezoldt, and G.Eichhorn, Materials Science and Engineering B29, 170 (1995).
    44.T. Sugii, T. Ito, Y. Furumura, M. Doki, F. Mieno, and M. Maeda, IEEE Electron Device Lett., EDL-9, 87 (1988).
    45.Y. Oshita, Appl. Phys. Lett., 57, 605 (1990).
    46.(a) H. Nagasawa and Y. Yamaguchi, Thin Solid films, 225, 230 (1993). (b) Hong, L. S. and C. M. Wu, Inst. Phys. Conf. Sr., 142, 93 (1996).
    47.Hong, L. S. and C. M. Wu, J. CIChE, 31, 79 (2000).
    48.Liaw, P., and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).
    49.Rai-Choudhury, P., and Formigoni, N. P., J. Electrochem. Soc. 116, 1440 (1969).
    50.(a) Hong, L. S. and Z. L. Liu, Ind. Eng. Chem. Res. 37, 3602 (1998). (b) Hong, L. S., Y. Shimogaki and H. Komiyama, J. De Phys., Ⅳ, Collo., 1, C2-87 (1991).
    51.P. S. Peercy, Nature 406, 1023 (2000).
    52.(a) K. K. Likharev, T. Claeson, Sci. Am. 1992, June, 80. (b) K. K. Likharev, IBM J. Res. Dev. 32, 144 (1998)
    53.(a) J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, L. J. de Jongh, Nature 375, 767 (1995). (b) B. L. Al’tshuler, P. A. Lee, Phys. Today December 36, 1988.
    54.(a) A. P. Alivisatos, Science 271, 933 (1996). (b) C. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).(c) L. Brus, J. Phys. Chem. 98, 3375 (1994). (d) M. G. Bawendi, M. L. Steigerwald, L. E. Brus, Annu. Rev. Phys. Chem. 41, 477, (1990).
    55.(a) Z. L. Wang, Adv. Mater. 12, 1295 (2000). (b) J. Hu, T. W. Odom, C. M. Leiber, Acc. Chem. Res. 32, 435 (1999). (c) A special issue in MRS Bull. 24, pp. 20-49 (1999).
    56.(a) Y. Cui, and C. M. Leiber, Science 291, 851 (2001). (b) T. Rueckes, K. Kim, E. Joselerich, G. Y. Tseng, C. Cheung, C. M. Leiber, Science 289, 94, (2000).
    57.F. Cerrina, C. Marrian, MRS Bull. December, 56 (1996).
    58.(a) J. M. Gibson, Phys. Today October, 56 (1997). (b) S. Matsui, Y. Ochiai, Nanotechnology, 7, 247 (1996).
    59.(a) M. D. Levenson, Solid State Technol. September, 81 (1995). (b) P. N. Dunn, Solid State Technol. June, 49 (1994).
    60.(a) A. P. Levitt, Whisker Technology, Wiley-Interscience, New York (1970). (b) . W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001). (c) P. M. Ajayan, S. Lijima, Nature 358, 23 (1992).
    61.(a) A. H. Heuer, G. A. Fryburg, L. U. Ogbuji, T. E. Mitchell, and S. J. Shinozaki, J. Am. Ceram. Soc. 61, 406 (1978). (b) T. E. Mitchell, L. U. Ogbuji, and A. H. Heuer, J. Am. Ceram. Soc. 61, 412 (1978).
    62.S. J. Bennison and M. P. Harmer, J. Am. Ceram. Soc. 66, C-90 (1983).
    63.W. A. Kaysser, M. Sprissler, C. A. Handwerker and J. E. Blendell, J. Am. Ceram. Soc. 70, 339 (1987).
    64.M. Krämer, M. J. Hoffmann, and G. Petzow, Acta. Metall. Mater. 41, 2939, (1993)
    65.H. Y. Lee, and S.-J. L. Kang, Acta Metall. Mater. 38, 1307 (1990).
    66.R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    67.(a) A. M. Morales, C. M. Leiber, Science 279, 208 (1998). (b) Y. Wu, P. Yang, Chem. Mater. 12, 605 (2000). (c) C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001). (d) X. Duan, C. M. Leiber, Adv. Mater. 12, 298 (2000). (e) M. H. Huang, Y. Wu, H. Feick, E. Webber, P. Yang, Adv. Mater. 13, 113 (2000).
    68.(a) Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003). (b) Y. Wu, and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
    69.J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp, Science 440, 69 (2006).
    70.R. W. Vook, Int. Metals Rev. 27, 209 (1982).
    71. (a) B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson and L. R. Wallenberg, Appl. Phys. Lett. 79, 3335, 2001. (b) Jr. H. He, Ju H. Hsu, Chun W. Wang, Heh N. Lin, Lih J. Chen, and Z. L. Wang, J. Phys. Chem. B 110, 50 (2006).
    72.T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nature Mater. 3, 524 (2003).
    73.M. Volmer, I. Estermann, Z. Phys. 7,13 (1921).
    74.(a) G. W. Sears, Acta Metall. 3, 367 (1955). (b) G. W. Sears, Acta Metall. 3, 361 (1955). (c) G. W. Sears, Acta Metall. 1, 457 (1953).
    75.(a) M. Wirtz and C. R. Martin, Adv. Mater. 15, 455 (2003). (b) J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, and D. Yang, Adv. Mater. 14, 1219 (2002). (c) C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 838 (2003).
    76.R. C. Furneaux, W. R. Rigby, and A. P. Davidson, Nature 337, 147 (1989).
    77.(a) D. AlMawiawi, N. Coombs, and M. Moskovits, J. Appl. Phys. 70, 4421 (1991). (b) C. A. Foss, M. J. Tierney, and C. R. Martin, J. Phys. Chem. 96, 9001 (1992).
    78.P. Enzel, J. J. Zoller, and T. Bein, Chem. Commun. 633 (1992).
    79.S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Science 283, 512 (1999).
    80.(a) H. Dai, E. W. Wang, Y. Z. Lu, S. S. Fan, and C. M. Leiber, Nature 375, 769 (1995). (b) W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, Science 277, 1287 (1997).
    81.(a) A. Fukkunaga, S. Y. Chu and M. E. McHenry, J. Mater. Res. 13, 2465 (1998). (b) W. Q, Han, Y. Bando, K. Kurashima and T. Sato, Appl. Phys. Lett. 73, 3085 (1998). (c) Y. J. Zhang, J. Zhu, Q. Zhang, Y. J. Yan, N. L. Wang, and X. Z. Zhang, Chem. Phys. Lett. 317, 3899 (2000). (d) Y. J. Zhang, J. Liu, R. R. He, Q. Zhang, X. Z. Zhang and J. Zhu, Chem. Mater. 13, 3899 (2001).
    82.S. M. Lee, S. N. Cho, and J. W. Cheon, Adv. Mater. 15, 441 (2003).
    83.X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59 (2000).
    84.A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tomek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996).
    85.(a) X. F. Duan and C. M. Leiber, Adv. Mater. 12, 298 (2000). (b) A. M. Morales, and C. M. Leiber, Science 278, 208 (1998)
    86.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003).
    87.R. Q. Zhang, T. S. Chu, H. F. Cheung, N. Wang, S. T. Lee, Phys. Rev. B 64, 113304 (2001).
    88.W. L. Barnes, A. Dereux and Thomas W. Ebbesen, Nature 424, 824 (2003).
    89.H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (1998), Springer, Berlin.
    90.Carsten Sönnichsen, “Plasmons in Metal Nanostructures”, (2001), Ph.D. thesis, Ludwig-Maximilians-University of Munich.
    91.S. Link and M. A. El-Sayed, Int. Rev. Phys. Chem. 19, 409 (2000).
    92.(a) F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst, and K. P. Martinek, Nature 407, 691 (2000). (b) D. J. Barber, and I. C. Freestone, Archaeometry 32, 33 (1990).
    93.S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, Ari, G. R. Requicha, and Harry A. Atwater, Adv. Mat. 13, 1501 (2001).
    94.(a) C. F. Bohren, D. R. Huffman, “Absorption and Scattering of Light by Small Particles”, (1998), John Willey & Sons, New York. (b) H. Hövel, S. Fritz, A. Hilger, and U. Kreibig, Phys. Rev. B48, 18178 (1993).
    95.(a) S. Link and M. A. El-sayed, J. Phys. Chem. 103, 4212 (1999). (b) Y. Xia, and N. J. Halas, MRS Bulletin 30, 338 (2005).
    96.P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, J. Phys. Chem. 110, 7238 (2006).
    97.U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer: Berlin, 1995.
    98.(a) K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, J. Am. Chem. Soc. 125, 588 (2003). (b) N. E. Hecker, R. A. Höpfel, and N. Sawaki, Appl. Phys. Lett. 75, 1577 (1999). (c) C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001). (d) M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).
    99.R. Dingle, R. B. Zetterstrom, K. L. Shaklee, and R. F. Leheny, Appl. Phys. Lett. 19, 5 (1971).
    100.M. Asifkhan, D. T. Olson, J. M. Van Hove, and J. N. Kuznia, Appl. Phys. Lett., 58, 1515 (1991).
    101.S. Chang, N. B. Rex, R. K. Chang, G. Chong, and L. J. Guido, Appl. Phys. Lett. 78, 166 (1999).
    102.T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys. Rev. Lett. 93, 103903-1 (2004).
    103.J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Nature Mat. 1, 106 (2002).
    104.M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 189 (2001).
    105.C. Klingshirn, J. Cryst. Growth 117, 753 (1992).
    106.Y. Kayamura, Phys. Rev. B 38, 9797 (1998).
    107.D. S. Wiersma, Nature 406, 133 (2000).
    108.(a) C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, J. Opt. Soc. Am. B 10, 2358 (1993). (b) N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvin, Nature 368, 436 (1994). (c) D. S. Wiersma, and A. Lagendijk, Phys. Rev. E54, 4256 (1996).
    109.V. S. Letokhov, Sov. Phys. JETP 26, 835 (1968).
    110.D. S. Wiersma, and S. Cavalieri, Nature 414, 708 (2001).

    無法下載圖示 全文公開日期 2011/06/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE