簡易檢索 / 詳目顯示

研究生: 曾堉
Yu - Tseng
論文名稱: 金屬基材與介金屬相在無鉛銲料中溶解現象的探討
Dissolution Behavior of Metals and Intermetallic Compounds in Lead-Free Solders.
指導教授: 李嘉平
Chiapyng Lee
顏怡文
Yee-wen Yen
口試委員: 陳信文
Sinn-wen Chen
高振宏
C.Robert Kao
劉正毓
Cheng-Yi Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 134
中文關鍵詞: 界面反應溶解機制介金屬相晶界擴散Dybkov's方程式
外文關鍵詞: intermetallic compound, grain boundary diffusion, Dybkov's equation, dissolution behavior and kinetic
相關次數: 點閱:237下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅與銀是目前電子工業中常使用的金屬基材材料,純錫、錫-3.0wt.%銀-0.5wt.%銅、錫-58.0wt.%鉍、錫-9.0wt.%鋅為最具潛力的無鉛銲錫合金。故本研究針對構裝製程中常使用的銅、銀金屬基材,探討基材與無鉛銲錫材料間的溶解行為。另外利用自行製備的介金屬化合物,對其在液態銲錫間發生的界面反應及溶解機制進行探討。此研究成果對無鉛銲接製程之應用與發展提供重要的參考資料。
    在反應溫度為300、270與240℃下,銅、銀基材在不同銲錫的溶解速率快慢依序為錫>錫-3.0銀-0.5銅>錫-58鉍>錫-9鋅;基材溶解行為隨著反應時間增加呈現線性的關係,且基材溶解速率與溫度成正比關係。銅、銀基材與純錫、錫-3.0銀-0.5銅、錫-58鉍銲錫反應生成銅-錫和銀-錫系的介金屬化合物,生成的介金屬相彼此間存有溝槽,基材將藉由此溝槽快速的擴散至銲錫內部溶解,溶解模式為晶界擴散(grain boundary diffusion)所主導;且基材溶解速率快慢與反應生成的介金屬層厚度、晶粒尺寸與界面形態相關;基材與銲錫間的濃度梯度差異越大將造成基材的溶解速增快。銅、銀基材與錫-9鋅銲錫反應則生成銅-鋅和銀-鋅系的介金屬化合物,此層狀結構的介金屬相厚度相當厚且沒有溝槽提供基材快速溶解的路徑,故錫-9鋅銲錫能抑制基材的溶解原因為此層狀結構所致。
    介金屬相Ag3Sn基材在液態純錫的溶解速率明顯高於在錫-3.0銀-0.5銅銲錫系統,且銲錫內銀元素含量的多寡將會造成Ag3Sn析出相的微結構的差異。關於錫-9鋅銲錫與介金屬相Ag3Sn基材進行液/固反應時,反應初期界面處會生成貝殼狀的AgZn3與層狀的Ag5Zn8介金屬相,此層狀的Ag5Zn8相阻礙銀原子擴散至液態銲錫內部。而當界面處的鋅濃度不足時,Ag3Sn基材中的銀與錫原子反應生成(Ag,Zn)4Sn相在銀-鋅系介金屬層與Ag3Sn基材之間,並造成(Ag,Zn)4Sn相與Sn混錯交錯的形態。


    Element Cu and Ag have been widely used for interconnection materials in electronic industries. Sn、Sn-3.0Ag-0.5Cu、Sn-58Bi and Sn-9Zn solders are most common lead-free solders. Dissolution behavior and kinetic of metallic substrates-Cu, Ag and the intermetallic compound (IMC)-Ag3Sn in molten Sn, Sn-3.0Ag-0.5Cu, Sn-58Bi and Sn-9Zn at 300, 270 and 240℃ are investigated in this study.
    The dissolution rate of both Cu and Ag in molten solders is Sn>Sn-3.0Ag-0.5Cu>Sn-58Bi>Sn-9Zn. The dissolution rate of metallic substrates increases with increasing temperature, and it exhibit approximately linear increasing with increasing the reaction time. Plane Cu3Sn and scalloped Cu6Sn5 phases in Cu/solders and the scalloped Ag3Sn phase in Ag/Solders can be observed at the metallic substrate/solder interface and the dissolution mechanism is controlled by the grain boundary diffusion except Sn-9Zn/substrate systems. For the Sn-9Zn/Cu system, the plane Cu5Zn8 layer forms at the interface. AgZn3, Ag5Zn8 and AgZn phases are found at the Sn-9Zn/Ag system. The compact layer IMC formed between the substrates and solder cause lower dissolution rate.
    The dissolution rate of Ag3Sn in Sn is more higher than that in Sn-3.0Ag-0.5Cu solder. Massive Ag3Sn phases dissolved into solders and forms during solidification processes in the Ag3Sn/Sn or Ag3Sn/Sn-3.0Ag-0.5Cu systems. There are three IMC layers formed between Sn-9Zn solder and Ag3Sn substrate are AgZn3/Ag5Zn8/(Ag,Zn)4Sn. With increasing reaction time, the growth of (Ag,Zn)4Sn increases and it moves forward and very close to Ag3Sn substrate. The mixture micro-structures of (Ag,Zn)4Sn and Sn are formed between Ag-Zn layers and Ag3Sn substrate.

    中文摘要.....................................................I 英文摘要....................................................II 誌謝........................................................IV 目錄.........................................................V 圖目錄.....................................................VII 表目錄.....................................................XII 第一章 前言..................................................1 第二章 文獻回顧..............................................4 2-1 :電子構裝技術..........................................4 2-2 :無鉛銲錫合金材料......................................9 2-3 :基材溶解行為動力學...................................12 2-3.1 :金屬基材於液態銲錫中的溶解現象................14 2-3.2 :介金屬相於液態銲錫中的溶解 ..................17 2-4 :界面反應動力學.......................................19 2-4.1 :擴散控制反應..................................20 2-4.2 :界面控制反應..................................23 2-4.3 :界面反應相關文獻回顧..........................24 第三章 實驗方法與步驟.......................................30 3-1 :金屬基材與不同銲錫間的反應...........................30 3-1.1 :無鉛銲錫合金製備..............................30 3-1.2 :棒狀基材準備與反應............................30 3-1.3 :金相處理......................................31 3-1.4 :試片分析......................................32 3-2 :介金屬相基材與不同銲錫間的反應.......................37 3-2.1 :介金屬相(Ag3Sn)製備與分析.....................37 3-2.2 :試片準備與反應................................38 3-2.3 :金相處理......................................39 3-2.4 :試片分析......................................39 第四章 結果與討論...........................................43 4-1 :銅基材於不同銲錫中溶解現象...........................43 4-1.1 :銅基材與不同銲錫反應的溶解數據................43 4-1.2 :銅基材與不同銲錫反應的界面型態................47 4-1.3 :銅基材溶解行為機制討論........................64 4-2 :銀基材於不同銲錫中溶解現象...........................85 4-2.1 :銀基材與不同銲錫反應的溶解數據................85 4-2.2 :銀基材與不同銲錫反應的界面型態................89 4-2.3 :銀基材溶解行為機制討論.......................105 4-3 :介金屬相(Ag3Sn)於不同銲錫中溶解現象.................113 4-3.1 介金屬相(Ag3Sn)的組成分析.....................113 4-3.2 介金屬相(Ag3Sn)基材與純錫、錫-3.0銀-0.5銅銲錫的溶 解行為........................................115 4-3.3 介金屬相(Ag3Sn)與液態錫-9鋅銲錫的溶解行為.....123 第五章 結論................................................127 第六章 參考文獻............................................129 作者簡介...................................................134

    1.黃新鉗,”IC構裝發展趨勢”,表面黏著技術,vol. 28, pp. 10 (1999).
    2.D. R. Frear and P. T. Vianco, Metallurgical Transactions A, 25A,
    pp. 1509 (1994).
    3.B. Trumble, J. Brydges, IEEE International Symposium on
    Electronics & the Environment, pp. 112-119 (1998).
    4.D. R. Smith, Flegal , J. A. R, Journal of Electronic Materials, vol. 30,
    pp. 1293 (2001).
    5.C. Ernhart, S. Scarr, presented at the ACYF research conference,
    New Directions in Child and Family Research (1991).
    6.A. Z. Miric and A. Girusd. Soldering and Surface Mount Technology,
    vol. 10, pp. 19-25 (1998).
    7.P. Zarrow, Circuits Assembly, August, p18-20 (1999).
    8.K. Zeng and K. N. Tu, Materials Science and Engineering: R: Reports
    ,vol. 38, pp. 55-105 (2002).
    9.K. N. Tu and K. Zeng, Proceedings - Electronic Components and
    Technology Conference, pp. 1194-1200 (2002).
    10.B. Huang, N. C. Lee, Proceedings of SPIE - The International Society
    for Optical Engineering, vol. 3906, pp. 711 (1999).
    11.Rao R. Tummala, president of the IEEE-CPMT Society, IEEE CPMT
    Society projects IC and wafer level packaging trends, EP&P (2003)
    “http://www.reed-electronics.com/epp/article/CA302687?pubdate=
    6%2F1%2F03”.
    12.J. Glazer, International Materials Reviews, vol. 40, pp. 65-93 (1995).
    13.H. P. R. Frederikse, R. J. Fields, A. Feldman, Journal of Apply
    Physics, vol. 72, pp. 2879-2882 (1992).
    14.J. E. Morris, Workshop, The Design and Processing Technology of
    Electronic Packaging (1997).
    15.孔令臣,錫鉛凸塊技術,電子月刊,4卷8期,1998年八月。
    16.Y. W. Yen, PhD. Thesis, National Tsing University (2002).
    17.Mulugeta Abtew and Guna Selvaduray, Materials Science and
    Engineering, vol. 27, pp. 95-141 (2000).
    18.黃家緯,林光隆,電子構裝無鉛銲錫的現況與發展,銲接與切割,
    13卷2期,92年六月。
    19.K. N. Tu, J. C. M. Li, Materials Chemistry and Physics, vol. 409, pp.
    131-139 (2005).
    20.G. T. T. Sheng, W. J. Choi, T. Y. Lee, K. N. Tu, N. Tamura, R.S.
    Celestre, A. A. MacDowell, Y. Y, Bong. L. Nguyen, Proceedings–
    Electronic Components and Technology Conference, pp.628-633
    (2002).
    21.W. J. Tomlinson and A. Fullylove, Journal of Materials Science,
    vol. 27, pp. 5728-5777 (1992).
    22.Y. G. Lee and J. G. Duh, Elsevier Science Inc, pp. 143-160 (1999).
    23.M. Abtew and G. Selvaduray, Materials Science and Engineering,
    vol. 27, pp.95 (2000).
    24.M. L. Huang, T. Loeher, A. Ostmann, H. Reichl, Applied Physics
    Letter, vol. 86, p181908 (2005).
    25.S. Mannan, M. Clode, Soldering and Surface Mount Technology,
    vol. 16, pp. 31-33 (2004).
    26.W. G. Bader, Welding Research Supplemrnt, vol. 48, pp. 551-557
    (1969).
    27.Ahmed Sharif and Y. C. Chan, Materials Science and Engineering,
    vol. 106, pp. 126-131 (2004).
    28.Ahmed Sharif and Y. C. Chan, Journal of Alloys and Compounds,
    vol. 390, pp. 67-73 (2005).
    29.M. O. Alam, Y. C. Chan, K. N. Tu, Journal of Applied Physics,
    vol. 94, pp. 7904-7909 (2003).
    30.K. L. Lin, P. Y. Yeh, J. M. Song, Journal of Metals, vol. 56, pp.
    269-273 (2004).
    31.Y. M. Liu, T. H. Chuang, Journal of Electronic Materials, vol. 29,
    pp.1047-1051 (2000).
    32.V. I. Dybkov, Cambridge International Science, Cambridge (1998).
    33.D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang, J. K. L. Lai, Journal
    of Alloys and Compounds, vol. 392, pp. 192-195 (2005).
    34.D. Ma, W. D. Wang, S. K. Lahiri, Journal of Applied Physics, vol. 91,
    pp. 3312-3317 (2002).
    35.J. M. Song, K. L. Lin, Journal of Materials Research, vol. 18 ,
    pp.2060-2067 (2003).
    36.S. C. Hsu, S. J. Wang, and C. Y. Liu, Journal of Electronic Materials,
    vol. 32 , pp. 1214-1221 (2003).
    37.A. Rahn, The Basics of Soldering, John Wiely & Sons, New York
    (1993).
    38.F.G. Yost, E. J. O’Toole, P. A. Sackinger and T. P. Swiler, Sandia
    Report, January, pp. 1-7 (1998).
    39.R. A. Rapp, A. Ezis, and G. J. Yurek, Metallurgical Transactions,
    vol. 4, pp.1283-1292 (1973).
    40.J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly,
    vol. 2 , pp. 89-117 (1963).
    41.N. Saunders and A. P. Miodownik, Bulletin of Alloy Phase
    Diagrams, vol. 11, pp. 278-287 (1990).
    42.K. N. Tu, Acta Metallurgica, vol. 21, pp. 347-354 (1973).
    43.K. N. Tu, Materials Chemistry and Physics, vol. 46 pp.217-223
    (1996).
    44.F. Bartels, J. W. Morris, Jr., G. Dalke, and W. Gust, Journal of
    Electronic Materials, vol. 23, pp. 787-790 (1994).
    45.L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, Metallurgical and
    Materials Transactions B, vol. 28B, pp. 927-934 (1997).
    46.K. N. Tu, Materials Chemistry and Physics, vol. 46, pp. 217-223
    (1996).
    47.J. Gorlich, G. Schmitz, K. N. Tu, Applied Physics Letters, vol. 86,
    pp. 053106 (2005).
    48.H. C. Bhedwar, K. K. Ray, S. D. Kulkarni, and V. Balasubramanian,
    Scripta Metallurgica, vol. 6, pp. 919-922 (1972).
    49.H. Oikawa and A. Hosoi, Scripta Metallurgica, vol. 9, pp. 823-828
    (1975).
    50.M. Onishi and H. Fujibuchi, Transactions of the Japan Institute of
    Metals, vol. 16, pp. 539-547 (1975).
    51.K. N. Tu and R. D. Thompson, Acta Metallurgica, vol. 30,
    pp.947-952 (1982).
    52.A. Zribi, A. Clark, L. Zavalij, P. Borgesen, and E. J. Cotts, Journal of
    Electronic Materials, vol. 30, pp. 1157-1164 (2001).
    53.C. M. Chuang, K. L. Lin, Journal of Electronic Materials, vol. 32, pp.
    1426-1431 (2003).
    54.C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, Journal of Electronic
    Materials, vol. 31, pp. 584-590 (2002).
    55.P. T. Vianco, A. C. Kilgo, and R. Grant, Journal of Electronic
    Materials, vol. 24, pp.1493-1505 (1995).
    56.L .Wang, H. T. Ma, H. P. Xie, D. Q. Yu, Dalian Ligong Daxue
    Xuebao/Journal of Dalian University of Technology, vol. 45,
    pp.663-667 (2005).
    57.莊東漢、吳醒非、黃貴偉、顏秀芳、林修任,界面科學會誌,
    26卷2期,2004年。
    58.C. Y. Chou, S. W. Chen. Acta Materialia, vol. 54, pp. 2393-2400
    (2006).
    59.I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams,
    vol. 1, pp. 94-97 (1991).
    60.S. K. Sen, A. Ghorai, and A. K. Bandyopadhyay, Thin Solid Film,
    vol. 155, pp. 243-253 (1987).
    61.Wang. X. H. and Conrad. H, Scripta Metallurgica et Materialia, vol.
    30, pp. 725-730 (1994).
    62.杜美瑤,國立清華大學化工所碩士論文,(2002年)。
    63.J. M. Song, P. C. Liu, C. L. Shih, K. L. Lin, Journal of Electronic
    Materials, vol. 34, pp. 1249-1254 (2005).
    64.Y. W. Yen, C. C. Jao, C. Y. Lin, Chiapyng Lee, Y. L. Kuo, (submit
    to Journal of Materials Research).
    65.American Ceramic Society, in “JCPDS-International Centre for
    Diffraction Data”, Swarthmore, PA (2003).
    66.A. P. Miodownik, Binary Alloy Phase Diagrams, pp. 1508 (1990).
    67.林光隆,宋振銘,黃家緯,界面科學會誌,26卷2期,2004年。
    68.葉柏毅,國立成功大學材料所碩士論文,2005年。
    69.邱正男,陳信文 (personal communication)
    70.K. W. Andrews, H. E. Davies, W. Hume-Rothery, and C. R. Oswin, in
    “ASM International, Materials Park”.
    71.Y. W. Yen, C. C. Jao (unpublished work)

    QR CODE