簡易檢索 / 詳目顯示

研究生: 李奕廷
Yi-Ting - Li
論文名稱: 單點鑽石刀具近似正交切削軟韌彈性墊之研究
Study on Quasi-Orthogonal Machining of Elastomer Pad by Single-Point Diamond Tool
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊棋銘
C.M.Yang
廖運炫
Yunn-Shiuan Liao
趙崇禮
none
郭俊良
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 182
中文關鍵詞: 化學機械平坦化拋光墊修整鑽石修整器近似正交切削三維犁削比
外文關鍵詞: Chemical mechanical planarization, Pad dressing, Diamond dresser, Pseudo-orthogonal machining, 3D Plowing ratio
相關次數: 點閱:263下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體為世上重大發明且與現代生活密不可分,隨著世代的進化變遷,不斷的追求微細化及線路層層堆疊而對於晶片的考驗也越來越嚴苛,全域平坦化表面將成為相當重要得關鍵技術。化學機械拋光/平坦化(Chemical Mechanical Polishing/Planarization, CMP)為目前各大半導體廠慣用的標準平坦化製程,半導體製程中為確保製程良率,須利用鑽石修整器維持拋光墊之工作特性及能力。鑽石修整器為多顆鑽石所組成,本研究從最基本現象開始探討,探討單顆鑽石於乾式修整後之拋光墊表面基本形貌與特性及移除機制,以近似正交切削模式(Pseudo-orthogonal machining, POM)建立鑽石對於軟韌材料拋光墊之彈塑性變形之犁削與切削模型,再利用最低磨耗拋光墊同時不失恢復拋光墊能力之參數進行探討,搭配不同種下壓力、拋光盤轉速及各種傾角之單顆鑽石對於拋光墊表面形貌影響。實驗為探討單顆鑽石角度對於聚胺酯(Polyurethane)拋光墊之彈塑性變形機制影響,結果顯示金字塔形角度60°、90°、120°之鑽石壓入實心與具孔隙拋光墊時將有90%因拋光墊彈性變形而能量損失,於修整製程實驗,鑽石以面及刃兩種方向進行修整會產生兩種不同的犁削機制,使拋光墊兩側隆起材料而造成拋光墊殘留於表面,以三維犁削比(3D Plowing ratio)進行比較以鑽石角度為90°較易於對實心與具孔隙拋光墊進行表面形貌移除,故較適合用於CMP製程中的鑽石修整器。


    As patterns have become more challenging, higher wafer surface quality is crucial. Chemical Mechanical Polishing/ Planarization, CMP has been a popular process for semiconductor fabrication. In CMP process, a diamond dresser is usually applied to condition pad surface topography and maintain pad capability. This study aims to investigate fundamental pad dressing process on nonporous and porous pads with plastic-elastic change under different angles of single diamond grits. It can be considered as a pseudo-orthogonal machining (POM) process under force control mode. Experiments apply the lowest dressing time and pressure for pad dressing, along with other different dressing conditions to observe the influence of dressing force change and removal mechanisms. Simulation by ABAQUS software of indention process show that 90% of the energy is lost due to elastic deformation of pad when using pyramid shaped diamond grit on nonporous pad. For experiments of dressing process, pad cutting by tool face or edge of diamond grit can achieve different plowing mechanism and causing deformed material to heave on both sides but not removed from the pad. The 3D plowing ratio has been defined and used to verify the pad removal volume versus the plowing volume. By testing the two plowing mechanisms, experimental results have shown that with a tool angle of 90°, the diamond grit is more capable of material removing on both nonporous and porous pads, which is more suitable for pad dressing in the CMP process based on current setup of this study.

    摘要 V Abstract VI 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIX 符號表 XX 一、 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 二、 文獻回顧 7 2.1 硬脆材料 7 2.2 正交刮削(Orthogonal scratching) 9 2.3 拋光墊 10 2.4 鑽石修整器 20 2.5 文獻回顧總結 29 三、 單顆鑽石於軟性彈性體修整模型 30 3.1 拋光墊修整 30 3.1.1 單顆鑽石壓痕模型 31 3.1.2 近似正交切削(Pseudo-orthogonal machining) 33 3.2 拋光墊的影響 37 3.3 修整製程模型建立 43 3.4 鑽石修整壓痕模擬 46 四、 軟韌彈性墊修整實驗設備與規劃 52 4.1 實驗設備 52 4.1.1 拋光機 52 4.1.2 單顆鑽石修整系統 54 4.2 實驗耗材 59 4.2.1 拋光墊 59 4.2.2 鑽石修整器 61 4.2.3 鑽石砂紙 62 4.3 實驗量測設備 63 4.4 實驗規劃 65 4.4.1 單顆鑽石於拋光墊壓痕實驗(實驗A) 65 4.4.2 單顆鑽石於實心拋光墊修整實驗(實驗B) 67 4.4.3 單顆鑽石角度差異修整實驗(實驗C) 68 4.4.4 具孔隙拋光墊修整實驗(實驗D) 69 五、 實驗結果與討論 70 5.1 單顆鑽石於拋光墊壓痕實驗(實驗A) 70 5.1.1 實驗初始條件 71 5.1.2 進刀深度與壓痕結果比較 72 5.1.3 壓痕硬度指標 80 5.2 單顆鑽石於實心拋光墊修整實驗(實驗B) 84 5.2.1 鑽石面修整溝槽形貌分析 84 5.2.2 鑽石面修整犁削比分析 87 5.3 單顆鑽石角度差異修整實驗(實驗C) 90 5.3.1 鑽石刃修整溝槽形貌分析 90 5.3.2 鑽石刃修整犁削比分析 92 5.4 具孔隙拋光墊修整實驗(實驗D) 93 5.4.1 具孔隙拋光墊溝槽形貌分析 93 5.4.2 具孔隙拋光墊犁削比分析 96 5.5 三維犁削比分析 98 5.6 切削力量分析 102 5.7 拋光墊移除率 109 5.8 轉速與下壓力綜合比較 119 5.9 綜合結果與討論 122 六、 結論與建議 127 6.1 結論 127 6.2 建議 132 參考文獻 133 附錄 137 附錄A 圓角差異 137 附錄B 單顆鑽石修整器 139 附錄C 量測設備 141 附錄D 共軛焦顯微鏡量測結果 147 作者簡介 159

    [1] H. Xiao, 羅正忠, and 張鼎張, "半導體製程技術導論," 台灣培生教育出版, 台北市, 2002.
    [2] 王建榮, 林慶福, and 林必窕, "半導體平坦化 CMP 技術," 全華科技圖書股份有限公司, 台北市, 1999.
    [3] K. C. Chen, "Study on Diamond Dressing of Soft and Ductile Polyurethane Pad." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
    [4] P. S. Chou, " Research on Hybrid-Energy Assisted Planarization for Polishing of Hydrolysis LAO Substrates " MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2012.
    [5] K. C. Ltd., "A Comparison Table of Material Characteristics", 2013.
    [6] B. J. Briscoe, and S. K. Sujeet. "Scratch resistance and localised damage characteristics of polymer surfaces–a review." Materialwissenschaft und Werkstofftechnik, 34(10-11), 989-1002, 2003.
    [7] Y. Li, Microelectronic applications of chemical mechanical planarization: John Wiley & Sons, 2007.

    [8] C. J. Wen, "Analysis on Effective Lifetime Index of Polishing Pad for CMP Process of Moncrystalline Silicon Wafers and Sapphire." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
    [9] K. Park, et al. "Correlation between break-in characteristics and pad surface conditions in silicon wafer polishing." journal of materials processing technology, 205(1), 360-365, 2008.
    [10] Y. Guo, H. Lee, Y. Lee, and H. Jeong, "Effect of pad groove geometry on material removal characteristics in chemical mechanical polishing." International Journal of Precision Engineering and Manufacturing, 13(2), 303-306, 2012.
    [11] Y. T. Chen, "Research of Dressing Break-in Time of Polishing Pad for Cu-Chemical Mechanical Polishing Process." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2014.
    [12] S. H. Huang, "Analysis on Friction Force and Mechanical Properties of Polishing Pads for Polishing of Sapphire Wafers." MSc Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 2013.
    [13] Z. Liu, G. Muldowney, and R. Palaparthi, "Measurement and Analysis of Single-Pass Conditioning Furrows in CMP Pad Surfaces." ECS Journal of Solid State Science and Technology, 4(11), 5118-5126, 2015.
    [14] B. Vasilev, et al. "Pad roughness evolution during break-in and its abrasion due to the pad-wafer contact in oxide CMP." Microelectronic Engineering, 111, 21-28, 2013.
    [15] M. Y. Tsai, and Wei Kai Chen. "Effect of CMP conditioner diamond shape on pad topography and oxide wafer performances." The International Journal of Advanced Manufacturing Technology, 55(1-4), 253-262, 2011.
    [16] W. K. Chen, M. Y. Tsai, and Y. L. Pai. "Investigation of Dressing Characteristics of Single Crystal Diamond in CMP." Advanced Materials Research, Vol. 797. Trans Tech Publications, 279-283, 2013.
    [17] P. Hall, S. Kalpakjian, and S. R. Schmid,"Manufacturing Engineering and Technology, 6th Edition." Pearson Education South Asia Pte Ltd, 2010.
    [18] S. Kim, et al. "Modeling and mitigation of pad scratching in chemical–mechanical polishing." CIRP Annals-Manufacturing Technology, 62(1), 307-310, 2013.
    [19] W. Che, et al. "Mechanistic understanding of material detachment during micro-scale polishing." Journal of manufacturing science and engineering, 125(4), 731-735, 2003.
    [20] A. Chandra, et al. "Prediction of scratch generation in chemical mechanical planarization." CIRP Annals-Manufacturing Technology, 57(1), 559-562, 2008.
    [21] N. Saka, T. Eusner, and J. H. Chun, "Scratching by pad asperities in chemical–mechanical polishing." CIRP Annals-Manufacturing Technology, 59(1), 329-332, 2010.
    [22] ASTM, "Standard Test method for Rubber Property-Durometer Hardness D2240," 2006.

    [23] ASTM, "Standard Test Methods for Compressibility and Recovery of Gasket Materials F36," 2006.
    [24] M. Y. Tsai, "CMP Diamond Conditioner Dressing Characteristics of Polyurethane Pad." PhD degrees, Department of Mechanical Engineering, National Taiwan University, 2007.
    [25] M. D. Drory, et al. "Fracture of synthetic diamond." Journal of applied physics, 78(5), 3083-3088, 1995.
    [26] G. R. Anstis, et al. "A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements." Journal of the American Ceramic Society, 64(9), 533-538, 1981.
    [27] A. K. Bhattacharya, and J. J. Petrovic, "Hardness and Fracture Toughness of SiC‐Particle‐Reinforced MoSi2 Composites." Journal of the American Ceramic Society, 74(10), 2700-2703, 1991.

    QR CODE