簡易檢索 / 詳目顯示

研究生: 詹豐嶽
Feng-Yueh Chan
論文名稱: 用於高速原子力顯微鏡之壓電致動器運動控制
Motion Control of Piezoelectric Actuator for High-Speed Atomic Force Microscopes
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 張以全
Peter I-Tsyuen Chang
劉孟昆
Meng-Kun Liu
藍振洋
Chen-Yang Lan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 63
中文關鍵詞: 原子力顯微鏡壓電致動器反覆控制器正位移回授控制器
外文關鍵詞: Atomic Force Microscopes (AFM), piezoelectric actuator, repetitive control, positive position feedback control
相關次數: 點閱:258下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

原子力顯微鏡系統主要採用高響應速度與高解析度的壓電致動器作為致動元件,常用於樣品表面之形貌輪廓掃描;此系統一般在固定幀率掃描下會產生周期性誤差,故有研究者提出以反覆控制器進行伺服設計來改良掃描成果。然而使用反覆控制器的一個問題是基頻中與其諧波的高增益容易激發系統高頻模態導致共振現象並降低成像品質。本研究為基於反覆控制器的控制架構下引入正位移回授控制器的設計方法改進上述共振問題並探討此壓電致動系統的運動控制效能。本研究將所設計之控制器演算法撰寫於客製之高速現場可程式化邏輯閘陣列系統,輔以高頻寬之光碟讀取頭作為位移感測器,完成取樣率高達1 MHz的閉迴路控制系統實現。由200 Hz方波追跡實驗結果可知,採用先設計反覆控制器再結合正位移回授控制器之設計法可得到較佳的上升時間;另外一個藉由先結合正位移回授控制器再依此閉迴路控制系統設計並加入反覆控制器的設計法則可獲得較佳的安定時間。


Piezoactuators are ubiquitous in atomic force microscopes (AFM) commonly used to scan the sample surface of a fixed frequency raster pattern and measure the mechanical properties of the surface. To improve the imaging quality, repetitive control (RC) has been proven as an effective control method for compensating the periodic errors associated with the periodic scanning process. However, the repetitive controller may also easily excites the resonant modes of the AFM system in light of using high control gain at the harmonics of the fundamental frequency in periodic signals. To alleviate the resonance problem, a positive position feedback (PPF) controller is incorporated into the repetitive control system for improved control performance. In this study, we propose an RC-PPF control system and analyze the performance compared with different control schemes. The experiments on tracking 200 Hz square waves demonstrate that (1) the control scheme that adds a PPF controller to an existing RC system can achieve a faster transient response; (2) the control scheme that designs a RC system using the feedback control system integrated with an existing PPF controller can result in a better resonance suppression control.

Contents Abstract in Chinese . iii Abstract in English . iv Acknowledgements . v Contents . vi List of Figures . viii List of Tables . x 1 Introduction . 1 1.1 Motivation . 5 1.2 Contribution . 7 1.3 Thesis Outline . 7 2 Analysis . 9 2.1 Block Diagram of Proposed Structure . 9 2.2 Positive Position Feedback Controller . 9 2.3 Plug-In ZPET-Type Repetitive Controller . 12 2.3.1 Repetitive Generator . 12 2.3.2 ZPET Controller . 13 2.3.3 Stability Analysis of Plug-in Repetitive Controller . 14 3 Controller Design . 19 3.1 System Modelling . 19 3.1.1 Modelling G . 19 3.1.2 Modelling Gcl . 21 3.1.3 Modelling Gcl,ppf . 24 3.2 Design of the repetitive controller . 25 3.2.1 Sensitivity Analysis . 27 3.3 Simulation . 29 4 Experiment Result . 35 4.1 Experiment Setup . 35 4.1.1 Astigmatism Detection System . 37 4.1.2 Field-Programmable-Gate-Array System . 40 4.2 Result . 41 5 Conclusions . 46 5.1 Future Work . 46 References . 48

[1] G. Binnig, C. F. Quate, and C. Gerber, “Atomic Force Microscope,” Physical Review Letters, vol. 56,
pp. 930–933, mar 1986.
[2] R. García, “Dynamic atomic force microscopy methods,” Tech. Rep. 6-8, 2002.
[3] T. Ando, T. Uchihashi, and T. Fukuma, “High-speed atomic force microscopy for nano-visualization
of dynamic biomolecular processes,” Progress in Surface Science, vol. 83, no. 7-9, pp. 337–437, 2008.
[4] T. Ando, N. Kodera, E. Takai, D. Maruyama, K. Saito, and A. Toda, “A high-speed atomic force microscope
for studying biological macromolecules,” Proceedings of the National Academy of Sciences,
vol. 98, no. 22, pp. 12468–12472, 2001.
[5] D. Y. Abramovitch, “Low latency demodulation for Atomic Force Microscopes, Part I efficient realtime
integration,” in Proceedings of the 2011 American Control Conference, pp. 2252–2257, IEEE,
jun 2011.
[6] K. S. Karvinen and S. O. R. Moheimani, “Control and Estimation Techniques for High-Bandwidth
Dynamic Mode Atomic Force Microscopy,” Phd, vol. 85, no. 2, p. 023707, 2014.
[7] M. G. Ruppert, K. S. Karvinen, S. L. Wiggins, and S. O. Moheimani, “A Kalman Filter for Amplitude
Estimation in High-Speed Dynamic Mode Atomic Force Microscopy,” IEEE Transactions on Control
Systems Technology, vol. 24, pp. 276–284, jan 2016.
[8] M. R. Ragazzon, M. G. Ruppert, D. M. Harcombe, A. J. Fleming, and J. T. Gravdahl, “Lyapunov
Estimator for High-Speed Demodulation in Dynamic Mode Atomic Force Microscopy,” IEEE Transactions
on Control Systems Technology, vol. 26, no. 2, pp. 765–772, 2018.
[9] Y. K. Yong, S. O. R. Moheimani, B. J. Kenton, and K. K. Leang, “Invited Review Article: Highspeed
flexure-guided nanopositioning: Mechanical design and control issues,” Review of Scientific
Instruments, vol. 83, p. 121101, dec 2012.
[10] Y. K. Yong, S. P. Wadikhaye, and A. J. Fleming, “High speed single- and dual-stage vertical positioners,”
Review of Scientific Instruments, vol. 87, no. 8, pp. 1–8, 2016.
[11] G. Schitter, K. J. Åström, B. E. DeMartini, P. J. Thurner, K. L. Turner, and P. K. Hansma, “Design and
modeling of a high-speed AFM-scanner,” IEEE Transactions on Control Systems Technology, vol. 15,
pp. 906–915, sep 2007.
[12] D. Croft, G. Shed, and S. Devasia, “Creep, Hysteresis, and Vibration Compensation for Piezoactuators:
Atomic Force Microscopy Application,” Journal of Dynamic Systems, Measurement, and Control,
vol. 123, no. 1, p. 35, 2001.
[13] K. K. Leang and S. Devasia, “Design of hysteresis-compensating iterative learning control for piezopositioners:
Application to atomic force microscopes,” Mechatronics, vol. 16, pp. 141–158, apr 2006.
[14] Y. Shan and K. K. Leang, “Accounting for hysteresis in repetitive control design: Nanopositioning
example,” Automatica, vol. 48, no. 8, pp. 1751–1758, 2012.
[15] M. Goldfarb and N. Celanovic, “A Lumped Parameter Electromechanical Model for Describing the
Nonlinear Behavior of Piezoelectric Actuators,” Journal of Dynamic Systems, Measurement, and Control,
vol. 119, no. 3, p. 478, 1997.
[16] M. R. Zakerzadeh, M. Firouzi, H. Sayyaadi, and S. B. Shouraki, “Hysteresis Nonlinearity Identification
Using New Preisach Model-Based Artificial Neural Network Approach,” Journal of Applied
Mathematics, vol. 2011, pp. 1–22, 2011.
[17] L. Chuntao and T. Yonghong, “A neural networks model for hysteresis nonlinearity,” Sensors and
Actuators A: Physical, vol. 112, pp. 49–54, apr 2004.
[18] X. Zhao and Y. Tan, “Neural network based identification of Preisach-type hysteresis in piezoelectric
actuator using hysteretic operator,” Sensors and Actuators, A: Physical, vol. 126, no. 2, pp. 306–311,
2006.
[19] F.-J. Lin, H.-J. Shieh, P.-K. Huang, and L.-T. Teng, “Adaptive control with hysteresis estimation and
compensation using RFNN for piezo-actuator,” IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, vol. 53, pp. 1649–1661, sep 2006.
[20] D. ZHANG, C.-j. ZHANG, Q. WEI, Y.-b. TIAN, J.-b. ZHAO, and L. Xian-ming, “Modeling and control
of piezo-stage using neural networks,” Optics and Precision Engineering, vol. 20, no. 3, pp. 587–
596, 2012.
[21] S. S. Aphale, B. Bhikkaji, and S. O. R. Moheimani, “Minimizing Scanning Errors in Piezoelectric
Stack-Actuated Nanopositioning Platforms,” IEEE Transactions on Nanotechnology, vol. 7, pp. 79–
90, jan 2008.
[22] H. Jung, J. Y. Shim, and D. Gweon, “Tracking control of piezoelectric actuators,” Nanotechnology,
vol. 12, pp. 14–20, mar 2001.
[23] S. S. Aphale, A. J. Fleming, and S. O. R. Moheimani, “Integral resonant control of collocated smart
structures,” Smart Materials and Structures, vol. 16, pp. 439–446, apr 2007.
[24] I. A. Mahmood and S. O. R. Moheimani, “Making a commercial atomic force microscope more accurate
and faster using positive position feedback control,” Review of Scientific Instruments, vol. 80,
p. 063705, jun 2009.
[25] M. S. Rana, H. R. Pota, and I. R. Petersen, “Model predictive control of atomic force microscope for
fast image scanning,” in 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), vol. 452,
pp. 2477–2482, IEEE, dec 2012.
[26] S. S. Aphale, A. J. Fleming, and S. Moheimani, “High speed nano-scale positioning using a piezoelectric
tube actuator with active shunt control,” Micro & Nano Letters, vol. 2, no. 1, p. 9, 2007.
[27] Y. Okazaki, “A micro-positioning tool post using a piezoelectric actuator for diamond turning machines,”
Precision Engineering, vol. 12, pp. 151–156, jul 1990.
[28] R. Jha and J. Rower, “Experimental investigation of active vibration control using neural networks
and piezoelectric actuators,” Smart Materials and Structures, vol. 11, pp. 115–121, feb 2002.
[29] H.-S. Liao, Y.-H. Chen, R.-F. Ding, H.-F. Huang, W.-M. Wang, E.-T. Hwu, K.-Y. Huang, C.-S. Chang,
and I.-S. Hwang, “High-speed atomic force microscope based on an astigmatic detection system.,”
The Review of scientific instruments, vol. 85, p. 103710, oct 2014.
[30] N. Kodera, H. Yamashita, and T. Ando, “Active damping of the scanner for high-speed atomic force
microscopy,” Review of Scientific Instruments, vol. 76, p. 053708, may 2005.
[31] U. Aridogan, Y. Shan, and K. K. Leang, “Design and Analysis of Discrete-Time Repetitive Control
for Scanning Probe Microscopes,” Journal of Dynamic Systems, Measurement, and Control, vol. 131,
no. 6, p. 061103, 2009.
[32] Y. Wu and Q. Zou, “Iterative control approach to compensate for both the hysteresis and the dynamics
effects of piezo actuators,” IEEE Transactions on Control Systems Technology, vol. 15, no. 5 SPEC.
ISS., pp. 936–944, 2007.
[33] K. L. Barton and A. G. Alleyne, “A cross-coupled iterative learning control design for precision motion
control,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp. 1218–1231, 2008.
[34] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica,
vol. 12, pp. 457–465, sep 1976.
[35] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control system: a new type servo system
for periodic exogenous signals,” IEEE Transactions on Automatic Control, vol. 33, pp. 659–668, jul
1988.
[36] K. J. Åström, P. Hagander, and J. Sternby, “Zeros of sampled systems,” Automatica, vol. 20, no. 1,
pp. 31–38, 1984.
[37] B. P. Rigney, L. Y. Pao, and D. A. Lawrence, “Nonminimum phase dynamic inversion for settle time
applications,” IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp. 989–1005, 2009.
[38] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “A Comparison of Control Arthitectures for
AFM,” Asian Journal of Control, vol. 11, no. 2, pp. 175–181, 2009.
[39] J. A. Butterworth, L. Pao, and D. Y. Abramovitch, “Analysis and comparison of three discretetime
feedforward model-inverse control techniques for nonminimum-phase systems,” Mechatronics,
vol. 22, pp. 577–587, aug 2012.
[40] J. L. Fanson and T. K. Caughey, “Positive position feedback control for large space structures,” AIAA
Journal, vol. 28, no. 4, pp. 717–724, 1990.
[41] K. Zhou and J. C. Doyle, Essentials of robust control, vol. 104. Prentice hall Upper Saddle River, NJ,
1998.
[42] C. Cosner, G. Anwar, and M. Tomizuka, “Plug in repetitive control for industrial robotic manipulators,”
in Proceedings., IEEE International Conference on Robotics and Automation, pp. 1970–1975,
IEEE Comput. Soc. Press, 1990.

QR CODE