簡易檢索 / 詳目顯示

研究生: 邱碩峰
Shou-Feng Chiu
論文名稱: 原子力顯微鏡探針量測系統之動態建模與控制
Dynamic Modeling and Control of Atomic Force Microscope probe measurement system
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 黃昌群
Chang-Chiun Huang
江茂雄
Mao-Hsiung Chiang
張嘉德
Chia-De Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 原子力顯微鏡漢米頓原理共點控制根軌跡基因演算法
外文關鍵詞: Atomic force microscopy, Hamilton’s principle, Collocated control, Root locus, Genetic Algorithms.
相關次數: 點閱:254下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討原子力顯微鏡(Atomic force microscopy)探針之物理模型,建構其運動數學模式與設計控制器。首先利用漢米頓(Hamilton’s principle)原理得到探針系統的偏微分運動方程式和邊界條件,以分離變數法(The separation of variables method)求出其頻率方程式與特徵函數,分析探針系統之自然頻率,再經由拉普拉式轉換(Laplace transform)求出系統開迴路轉移函數,並利用Matlab套裝軟體求得系統極點與零點分佈情形。最後由共點控制(Collocated)來設計致動器與感測器,從根軌跡圖可以看出極點與零點分佈交錯於虛軸上,具極小相位系統之特性,可作為稍後在控制系統設計之考量依據。
    根據根軌跡法(Root locus method)分析閉迴路系統的軌跡變化,避免極零點對消情形,而影響系統穩定性,接著依據根軌跡設計比例微分控制器與相位領先補償器,最後利用基因演算法(Genetic Algorithms, GA),設定收尋之目標函數,對控制器參數做最佳參數之收尋,可減少計算時間與增加精確性。結果顯示,設計之控制器能使系統無窮多個振動模態穩定且有效抑制,以不產生超越量與增加響應速度為原則,本論文所設計之控制器可以符合期望目標,達到精密控制之實用性。


    The objective of thesis is to derive the mathematical model and design the controller of the micro-cantilever probe measurement system of atomic force microscopy. However, most of the distributed parameter control system for atomic force microscopy are based on reduced-order models, but the problems of result are often in “ computation errors” or “control and observation spillover”. Therefore, developing some realizable controllers which cannot only stabilize all the vibration modes but also make such system efficient for good tracking is crucial. First, the governing equations of motion and associated boundary conditions are derived from Hamilton’s principle. Using the separation of variables method, the dynamic characteristics such as natural frequencies and mode shapes function of the system can be analyzed. And then, the corresponding open loop transfer function will be obtained from Laplace transform. Finally, the actuator and sensor will be designed from collocated control. The results show that the poles and zeros patterns will interlace along the imaginary axis in the root locus and have characteristic of minimum phase property. It is the essential characteristics for designing the controller for such system.
    According to root locus method the tracking property in the closed loop system can be analyzed. Avoid all the poles and zeros cancellation with each other to influence the system to be steady, then the augmented root locus method is used to design the controllers such as Proportional-Derivative controller and Phase Lead compensator. It can be shown that system cannot only eliminate infinite dimensional vibration modes but also make system stable. Finally, the objective function of Genetic Algorithms can be designed for to find out the best parameter of controller in order to reduce computational process and improve accuracy. It can be seen from computer simulation, the designed control system for atomic force microscopy can accord with performance index to reach precision control.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 IX 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 4 1.4 研究流程架構 7 第2章 原子力顯微鏡探針之數學模型推導 8 2.1 數學模型之建立 9 2.2 運動方程式之推導 10 2.3 探針-樣品間相互作用力 13 2.3.1 凡得瓦爾力 14 2.3.2 擬彈簧化 16 2.4 特徵方程式與模態函數 18 2.5 原子力顯微鏡轉移函數 20 2.6 模態加總法 23 第3章 系統模式分析與控制器設計 30 3.1 控制方法分析 30 3.1.1 理論推導 31 3.1.2 穩定性分析 33 3.1.3 系統模態數設計 34 3.2 控制器設計 38 3.2.1 比例(P)控制器 38 3.2.2 比例微分(PD)控制器 40 3.2.3 相位領先補償器 44 3.3 基因演算法PD控制器 49 3.3.1 理論介紹 49 3.3.2 基因編碼 50 3.3.3 適應性函數 50 3.3.4 挑選機制 51 3.3.5 交配機制 52 3.3.6 突變機制 53 第4章 控制系統模擬 57 4.1 系統未加控制器 57 4.2 性能規格 59 4.3 系統加入比例微分控制器 60 4.4 系統加入相位領先補償器 63 4.5 系統加入基因演算法PD控制器 66 4.6 模擬結果與討論 70 第5章 結論與未來研究方向 72 5.1 結論 72 5.2 未來研究方向建議 73 參考文獻 75

    [1] Binning, G., Rohrer, H., Gerber, Ch., and Weibel, E., “Surface Studies by Scanning Tunneling Microscopy”, Physical Review Letters, Vol. 49, pp. 57-61, 1982.
    [2] Binning, G., Quate, C. F., and Gerber, Ch., “Atomic Force Microscope”, Physical Review Letters, Vol. 56, pp. 930-933, 1986.
    [3] Huyskens, P. L., “Intermolecular Forces :an introduction to modern methods and results”, 1991.
    [4] Hastings, G. G., and Book, W. J., “Verification of A Linear Dynamic Model for Flexible Robotic Manipulators ”, IEEE International Conference on Robotics and Automation, pp. 1024-1029, 1986.
    [5] Nelson, W. L., “End-Point Sensing and Load-Adaptive Control of a Flexible Robot Arm”, IEEE Proceeding of 24th Conference on Decision and Control, pp. 1410-1415, 1985.
    [6] Cappella, B., and Dietler, G., “Force-distance curves by atomic force microscopy”, Surface Science Reports, Vol. 34 , pp. 4-15, 1999.
    [7] Usoro, P. B., Mahil, S. S., and Nadir, R., “A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 108, pp. 198-205, 1986.
    [8] Fung, R. F., and Huang, S. C., “Dynamic Modeling and Vibration Analysis of the Atomic Force Microscope”, ASME Journal of Vibration and Acoustics, Vol. 123, pp. 502-509, 2001.
    [9] Laura, P. A. A., Pombo , J. L., and Susemihl, E. A., “A note on the vibration of a clamped-free beam with a mass at the free end”, Journal of Sound and Vibration, Vol. 37(2), pp. 161-168, 1974.
    [10] Gurgoze, M., “On the Approximate Determination of the Fundamental Frequency of a Restrained Cantilever Beam Carrying a Tip Heavy Body”, Journal of Sound and Vibration, Vol. 105(3), pp. 443-449, 1986.
    [11] Gurgoze, M., “On the Eigenfrequencies of a Cantilever Beam with Attached Tip Mass and a Spring-Mass System”, Journal of Sound and Vibration, Vol. 190 (2), pp. 149-162, 1996.
    [12] Bapat , C. N., “Natural Frequencies of a Beam with Non-Classical Boundary Conditions and Concentrated Masses ”, Journal of Sound and Vibration, Vol. 112, pp. 177-182, 1987.
    [13] Popplewell , N., and Chang, D., “Free Vibrations of a Complex Euler- Bernoulli Beam ”, Journal of Sound and Vibration, Vol. 190(5), pp. 852-856, 1996.
    [14] Zhou, D., “The vibrations of a cantilever beam carrying a heave tip mass with elastic supports ”, Journal of Sound and Vibration, Vol. 206(2), PP.275-279, 1997.
    [15] Auciello, N. M., “Transverse Vibrations of a Linearly Tapered Cantilever Beam with Tip Mass of Rotatory Inertia and Eccentricity ”, Journal of Sound and Vibration, Vol. 194(1), pp. 25-34, 1996.
    [16] Holscher, H., Schwarz, U. D., and Wiesendanger, R., “Calculation of the Frequency Shift in Dynamic Force Microscopy”, Applied Surface Science, Vol. 140, pp. 344-351, 1999.
    [17] Chang, W. J., and Chu, S. S., “Analytical Solution of Flexural Vibration Responses on Taped Atomic Force Microscope Cantilevers”, Physics Letters A, Vol. 309, pp. 133-137, 2003.
    [18] Ricardo, G., and Ruben, P., “Dynamic Atomic Force Microscopy Methods”, Surface Science Reports, Vol. 47 , pp. 197-301, 2002.
    [19] Wu, J. S., and Chou, H. M., “Free Vibration Analysis of a Cantilever Beam Carrying any Number of Elastically Mounted Point Masses with the Analytical-and-Numerical-Combined Method ”, Journal of Sound and Vibration, Vol. 213(2), pp. 317- 332, 1998.
    [20] Wu, J. S., and Huang, C. G., “Free and forced vibrations of a timoshenko beam with any number of translational and rotational springs and lumped masses ”, Communications in Numerical Methods in Engineering, Vol. 11, pp. 743-756, 1995.
    [21] Wu, J. S., and Chen, D. W., “Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with dampers ”, Journal of Sound and Vibration, Vol. 229(3), pp. 549-578, 2000.
    [22] Skelton, R. E., Hughes, P., and Hablani, H., “Order Reduction for Models of Space Structures Using Model Cost Analysis”, Journal of Guidance and Control, Vol. 5, pp. 351-357, 1982.
    [23] Chang, R. Y., and Wang, M. L., “Model Reduction and Control System Design by Shifted Legendre Polynomial Functions”, Transactions of the ASME, Journal of Dynamic System, Measurement and Control, Vol. 105, pp. 52-55, 1983.
    [24] Gevarter, W. B., “Basic Relations for Control of Flexible Vehicles”, AIAA Journal, Vol. 8, pp.666-672, 1970.
    [25] Wie, B., and Bryson, A. E., “Modeling and Control of Flexible Space Structures”, Proceedings of the Third VPI&SU/AIAA Symposium, Blacksburg, VA, pp. 153-174, 1981.
    [26] Merovitch, L., and Baruh, H., “Control of Self-Adjoint Distributed Parameter System”, Journal of Guidance, Control and Dynamic, Vol. 5, pp. 60-66, 1982.
    [27] Basso, M,, Giarre, L., Dahleh, M., and Mezic, I., “Numerical Analysis of Complex Dynamics in Atomic Force Microscopes”, Proceedings of the IEEE Conference on control Applications, Vol. 2, pp. 1026 – 1030, 1998.
    [28] Ashhab, M., Salapaka, M., Dahleh, M., and Mezic, I., “Dynamical Analysis and Control of Microcantilevers”, Automatica, Vol. 35, pp. 1663-1670, 1999.
    [29] Fang, Y., Feemster, M., Dawson, D., and Jalili, N., “Active Interaction Force Identification for Atomic Force Microscope Applications”, Proceedings of 41st IEEE Conference on Decision Control (CDC’02), Vol. 4, pp. 3678 – 3683, 2002.
    [30] Rutzel, S., Lee, S. I., and Raman, A., “Nonlinear Dynamics of Atomic-Force-Microscope Probe Driven in Lennard-Jones Potentials”, The Royal Society, Vol.459, pp. 1925-1948, 2003.
    [31] Lee, S. I., Howell, S. W., Raman, A., Reifenberger, R., “Nonlinear Dynamic Perspectives on Dynamic Force Microscopy”, Elsevier Science, pp. 185-198, 2003.
    [32] Chang, W. J., Lin, C. M., Lee, J. F., and Lin, S. L., “Determination of Damping Force between Atomic Force Microscope Tips and Sample Using an Inverse Methodology”, Physics Letters A, Vol. 343, pp. 79-84, 2005.
    [33] Metin, S., and Hideki, H., “Controlled Pushing of Nanoparticles: Modeling and Experiments”, IEEE/ASME Transactions on Mechatronics, Vol. 5, pp. 199-211, 2000.
    [34] Sader, J. E.,“Parallel Beam Approximation for V-shaped Atomic Force Microscope Cantilevers”, Review of Scientific Instruments, Vol. 66, No. 9, 4583-4887, 1995.
    [35] Yamanaka, K., Noguchi, A., Tsuji, T., Koike, T., and Goto, T., “Quantitative Material Characterization by Ultrasonic AFM”, Surface and Interface Analysis, Vol. 27, pp.600-606, 1999.
    [36] Gibson, C. T., Johnson, D. J., Anderson, C., Abell, C ., and Rayment. T., “Method to Determine the Spring Constant of Atomic Force Microscope Cantilevers”, Review of Scientific Instruments, Vol. 75, pp. 565-567, 2004.
    [37] Park, J, H., and Asada, H., “Design and Control of Minimum-Phase Flexible Arms with Torque Transmission Mechanisms”, Proceedings of 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, pp. 1790-1795, 1990.
    [38] Park, J, H., and Asada, H., “Dynamic Analysis of Noncollocated Flexible Arms and Design of Torque Transmission Mechanisms”, ASME Journal of Dynamic System, Measurement and Control, Vol.116, pp. 201-207, 1994.
    [39] Stark, M., Guckenberger, R., Stemmer, A., and Stark, R. W., “Estimating the Transfer Function of the Cantilever in Atomic Force Microscopy: A System Identification Approach”, Journal of Applied Physics, Vol.98, pp. 201-207, 1994.
    [40] Fang, Y., Feemster, M., Dawson, D., and Jalili, N. M., “Nonlinear Control Techniques for the Atomic Force Microscope System”, Journal of Control Theory and Applications, Vol. 3, pp.85-92, 2005.
    [41] 李政霖, “原子力顯微鏡探針控制系統之設計”, 國立台灣科技大學, 高分子工程研究所碩士論文, 2005.
    [42] Meirovitch, L., “Dynamic and Control of Structures”, John Wiley and Sons, New York, 1992.
    [43] Kreyszig, E., “Advanced Engineering Mathematics”, Seven Edition, 1993.
    [44] Dawson, D., and Jalili, N., “A Fresh Insight Into the Microcantilever-Sample Interaction Problem in Non-Contact Atomic Force Microscopy”, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 126, pp. 327-335, 2004.
    [45] Israelachvili, J. N., “Intermolecular and Surface Force”, Academic Press, London, 1991.
    [46] Huyskens, P. L., “Intermolecular forces :an introduction to modern methods and results”, Springer-Verlag, New York, 1991.
    [47] Cetlinkunt, S., and Yu, W. L., “Closed-Loop Behavior of a Feedback-Controlled Flexible Arm: A Comparative Study”, International Journal of Robotics Research, Vol. 10, pp. 263-275, 1991.
    [48] Kuo, C. F., and Lin, S. C., “Lead with Closed-Loop System f Vibration Modes of Rectangular AFM Cantilevers”, Physics Letters A, Vol.312, pp. 158-165, 2003.
    [49] Rabe, U., Janser, K., and Arnold, W., “Vibrations of Free and Surface-Coupled Atomic Force Microscope Cantilevers Theory and Experiment”, Review of Scientific Instruments, Vol. 67, pp. 3281-3293, 1996.
    [50] Martin, G. D., “On the Control of Flexible Mechanical System”, Ph.D. Dissertation, Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, SUDARR 511, 1978.
    [51] Holland, J. H., “Adaption in Natural and Artificial System”, Ann Arbor, University of Michigan Press, 1975.

    QR CODE