簡易檢索 / 詳目顯示

研究生: 張君綾
Chun-ling Chang
論文名稱: 不同地勢對細胞生長與機械性質的影響
The cell behavior and biomechanism on surfaces with different topography
指導教授: 何明樺
Ming-Hua Ho
口試委員: 李忠興
Chung-hsing Li
胡孝光
Shiaw-guang Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 140
中文關鍵詞: 原子力顯微鏡不同槽寬細胞分化細胞貼附細胞的彈性系數
外文關鍵詞: atomic force microscopy, different groove widths, cell differentiation, cell attachment, cell stiffness
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用軟蝕刻(soft lithography)技術,將微溝槽轉印在聚二甲基矽氧烷(polydimethalsiloxane,PDMS)薄膜上,同心圓的中心至邊緣的溝槽寬度由20 m至1 m遞減,深度維持在0.8 μm,並藉由低溫氬離子電漿改質,將疏水性的PDMS改質為親水性。本研究選用兩種能表現骨分化能力的細胞:骨母細胞(7F2)與類骨細胞(UMR)培養在親、疏水性以及微溝槽結構的表面,探討貼附(attachment)、細胞排列比率(alignment)、延伸度(elongation)、細胞研展面積(spreading)、增生(proliferation)、細胞骨架分佈(cytoskeleton distribution)、細胞硬度(cell stiffness)及細胞分化(cell differentiation)進行分析。實驗結果顯示,骨母細胞與類骨細胞的排列比率、延伸度與細胞骨架的訊號表現隨著溝槽寬度減少而增加,因此兩種細胞皆具有contact guidance的現象。此外,藉由細胞骨架免疫染色顯示,細胞雙極結構(bipolar)所產生的偽足及肌動蛋白絲具有高度方向性並順著溝槽方向生長,且肌動蛋白絲的密度也會隨溝槽寬度變窄而增加。
    在細胞的貼附與細胞增生的結果中,儘管在溝槽寬度為1-6 μm時可以提供較大的貼附面積,但溝槽結構卻會阻礙骨母細胞貼附、延展和增生;反之,此類表面卻會促進類骨細胞的貼附、延展及增生。並根據分析細胞的穿透深度的結果,細胞生長在為溝槽結構時的細胞貼附行為,與細胞本身的軟硬度有絕對的關係,也就是說,類骨細胞能夠研伸進溝槽的底部,所以細胞生長在狹窄的溝槽時能夠促進細胞的貼附,相反的,骨母細胞的硬度較高,狹窄的溝槽將會抑制細胞的研展與貼附,而這個結果與分離細胞與基材表面的功相符。此外,骨母細胞的前期骨分化表現會隨著溝槽寬度的減少增加,並且在窄溝槽上的骨母細胞之楊氏系數最大,這個結果證實了狹窄的溝槽基板能夠促進骨分化表現。另一方面,材料表面的潤濕性也會影響材料表面結構對細胞的調節作用,這是因為細胞親和力的增加,細胞很容易辨識並貼附於基材表面地勢,因而在親水性的表面上,細胞的貼附、延展、排列比率及細胞骨架的方向性行為將更加明顯。


    In this research, microgrooved topography was transferred to polydimethylsiloxane (PDMS) by using soft lithography method. The width of grooves and ridges varied from 1 μm to 20 μm, while the groove depth was kept about 0.8 μm. By exposing to Argon plasma treatment, PDMS surface changed from hydrophobic into hydrophilic. The two kinds of cells were cultured on the grooved surfaces in this research, including osteoblast-like cells (UMR) and osteoblasts (7F2) which are able to express osteogenic differentiation. The increase in alignment, elongation and the organization of actin filaments with respect to the decrease in groove width indicated that “contact guidance” was found, which appeared in both of UMR and 7F2. On grooved surface, cells adopted bipolar morphology with few lamellipodia and owned highly orientated actin filaments which located along the groove direction. On the other hand, they exhibited meshwork of peripheral actin filament with many lamellipodia when they were cultured on flat surface.
    The attachment, spreading and proliferation of 7F2 were retarded by the small groove patterns (1-6 μm) despite this structure could offer a larger specific area. In contrast, narrow grooves promoted the attachment, spreading, and proliferation of UMR. According to the analysis of cell penetration depth, the effect of topography on cells was determined by the cell flexibility. That was, if cells were able to elongate into groove bottom, such as UMR, the narrow grooves would enhance cell attachment and so on. However, for cells with high stiffness, such as 7F2, narrow groove would retard cell spreading and attachment seriously. The results were also identified from the works for cell-PDMS separation.
    Furthermore, early osteoblastic differentiation (ALPase) of osteoblast cells was notably enhanced corresponding to the reduction of groove width. The cell stiffness was also enhanced due to the reduction of groove width. This finding confirms that narrow groove patterns are able to promote osteoblasts differentiation. The research outcomes implicate that microgrooved surfaces would promote the orientation and then the differentiation of osteoblasts. On the other hand, the influences of surface wettability were also examined and the results indicate that hydrophilic surface could enhance the effect of groove patterns. Because of the high affinity between cells and hydrophilic surfaces, cultured cells would recognize topographical cues better on grooved PDMS with high wettability.

    摘要 1 Abstrate III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XVIII 方程式目錄 XX 中英文對照表 XXI 第一章 序論 - 1 - 第二章 文獻回顧 - 3 - 2.1 微溝槽的基材對細胞行為之影響 - 3 - 2.2 細胞力學 - 10 - 2.2.1細胞與細胞骨架(Cytoskeleton) - 11 - 2.2.2量測細胞力學的工具 - 13 - 2.2.3原子力顯微鏡 (Atomic Force Microscopy, AFM) - 16 - 2.2.4 活體細胞之彈性膜數評估 - 19 - 2.2.5 細胞貼附力之量測 - 21 - 2.3 細胞與細胞外基質(ECM) - 23 - 2.3.1 細胞外基質之組成與特性 - 23 - 2.3.2 細胞與細胞外基質間的交互作用 - 27 - 2.4 材料表面改質 - 29 - 2.4.1 化學因子:電漿表面改質 - 30 - 2.4.2 表面地形因子 - 31 - 2.5聚二甲基矽氧烷(Polydimethylsiloxane, PDMS) - 33 - 2.6 骨母細胞 (7F2 Osteoblasts) - 36 - 2.7 大鼠骨肉瘤細胞(UMR-106 cells) - 37 - 2.8 骨母細胞分化標記 - 38 - 第三章 實驗材料與方法 - 40 - 3.1 實驗藥品 - 40 - 3.2 實驗儀器 - 42 - 3.3 實驗方法 - 44 - 3.3.1 培養基材 - 44 - 3.3.1.1 PDMS培養基材之製備 - 44 - 3.3.1.2 培養基材之清洗流程 - 45 - 3.3.2 表面改質 - 45 - 3.3.2.1 氬氣電漿表面改質 - 45 - 3.3.3 PDMS培養基材特性之分析 - 46 - 3.3.3.1基材表面靜態接觸角之量測 - 46 - 3.3.3.2掃描式電子顯微鏡觀察表面形態 - 46 - 3.3.4 細胞培養 - 47 - 3.3.5 細胞貼附與細胞增生實驗 - 49 - 3.3.6 電顯觀察前之細胞樣本處理方式 - 49 - 3.3.7 利用原子力顯微鏡量測骨母細胞與基材表面的貼附力 - 51 - 3.3.7.1修飾探針 - 51 - 3.3.7.2在氣相中量測骨母細胞與微溝槽表面之間的貼附力 - 52 - 3.3.8 利用原子力顯微鏡量測細胞的楊氏系數 - 54 - 3.3.8.1 在液相中量測骨母細胞在微溝槽表面之楊氏系數 - 54 - 3.3.8.3 Non-Hertzian model - 55 - 3.3.8.4 細胞力學性質分析 - 56 - 3.3.9 細胞骨架染色(Cytoskeleton immunostaining) - 57 - 3.3.10 鹼性磷酸酶(ALP-ase)定性染色 - 58 - 第四章 結果與討論 - 59 - 4.1 聚二甲基矽氧烷基材之特性分析 - 59 - 4.1.1 基材表面的電子顯微鏡觀察與親疏水性分析 - 59 - 4.1.2 表面官能基結構分析 - 62 - 4.3 親疏水表面與微溝槽結構之材料對骨母細胞生長行為的影響 - 64 - 4.2.1 細胞型態觀察 - 64 - 4.2.2 細胞貼附行為 (Cell attachment) - 69 - 4.2.3 細胞延展面積 (Cell spreading area) - 72 - 4.2.4 細胞增生行為 (Cell profliferation) - 75 - 4.2.5 細胞延伸度 (Cell elongation) - 77 - 4.2.6 細胞的排列方式 (Cell alignment) - 80 - 4.3 利用原子力顯微鏡量測骨母細胞的力學性質 - 83 - 4.3.1親疏水與微溝槽之材料表面對骨母細胞的貼附力影響 - 83 - 4.3.2親疏水表面與微溝槽結構對骨母細胞之楊氏系數的影響 - 89 - 4.4 骨母細胞培養在聚二甲基矽氧烷基材的肌動蛋白骨架染色 - 99 - 4.4.1 骨母細胞培養在未改質的聚二甲基矽氧烷基材上 - 99 - 4.4.2 骨母細胞培養在經電漿改質的聚二甲基矽氧烷基材上 - 107 - 4.4.3 不同細胞培養在微溝槽表面結構的穿透深度 - 112 - 4.5 骨母細胞培養在聚二甲基矽氧烷基材的鹼性磷酸酶之定性染色 - 116 - 第五章 結論 - 122 - 參考文獻 - 124 - 附錄 - 134 - 附錄A、Image-J量測細胞面積 - 134 - 附錄B、Image-J量測細胞延伸度 - 136 - 附錄C、分離細胞與基材的功 - 138 - 附錄D、細胞的楊氏系數求法 - 139 -

    1. Yang, Shih-Ping, Chyun-Yu Yang, Tzer-Min Lee, and Truan-Sheng Lui, Effects of calcium-phosphate topography on osteoblast mechanobiology determined using a cytodetacher. Materials Science and Engineering: C, 2012. 32(2): p. 254-262.
    2. Uttayarat, P., G. K. Toworfe, F. Dietrich, P. I. Lelkes, and R. J. Composto, Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: Orientation of actin filaments and focal adhesions. Journal of Biomedical Materials Research - Part A, 2005. 75(3): p. 668-680.
    3. Yang, S. P. and T. M. Lee, The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher. Journal of Materials Science: Materials in Medicine, 2011. 22(4): p. 1027-1036.
    4. Fletcher, Daniel A. and R. Dyche Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485-492.
    5. Harrison, Ross G., On the stereotropism of embryonic cells. Science, 1911. 34(870): p. 279-281.
    6. Weiss, Paul, Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization. Journal of Experimental Zoology, 1945. 100(3): p. 353-386.
    7. Clark, P., P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, Cell guidance by ultrafine topography in vitro. Journal of Cell Science, 1991. 99(1): p. 73-77.
    8. Eisenbarth, E., J. Meyle, W. Nachtigall, and J. Breme, Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials, 1996. 17(14): p. 1399-1403.
    9. Clark, P., P. Connolly, A. S. G. Curtis, J. A. T. Dow, and C. D. W. Wilkinson, Topographical control of cell behaviour: II. multiple grooved substrata. Development, 1990. 108(4): p. 635-644.
    10. Ismail, F., R. Rohanizadeh, S. Atwa, R. Mason, A. Ruys, P. Martin, and A. Bendavid, The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. Journal of Materials Science: Materials in Medicine, 2007. 18(5): p. 705-714.
    11. Walboomers, X. F., W. Monaghan, A. S. G. Curtis, and J. A. Jansen, Attachment of fibroblasts on smooth and microgrooved polystyrene. Journal of Biomedical Materials Research, 1999. 46(2): p. 212-220.
    12. Uttayarat, P., P. I. Lelkes, and R. J. Composto. Effect of nano-to micro-scale surface topography on the orientation of endothelial cells. 2005. Boston, MA.
    13. Yang, Jung-Yen, Yen-Chung Ting, Juin-Yih Lai, Hsuan-Liang Liu, Hsu-Wei Fang, and Wei-Bor Tsai, Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. Journal of Biomedical Materials Research Part A, 2009. 90A(3): p. 629-640.
    14. Lu, X. and Y. Leng, Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. Journal of Biomedical Materials Research - Part A, 2003. 66(3): p. 677-687.
    15. Biggs, M.J.P, R.G Richards, S McFarlane, C.D.W Wilkinson, R.O.C Oreffo, and M.J Dalby, Adhesion formation of primary human osteoblasts and the functional response of mesenchymal stem cells to 330 nm deep microgrooves. Journal of The Royal Society Interface, 2008. 5(27): p. 1231-1242.
    16. Hamilton, D. W., M. O. Riehle, W. Monaghan, and A. S. G. Curtis, Articular chondrocyte passage number: Influence on adhesion, migration, cytoskeletal organisation and phenotype in response to nano- and micro-metric topography. Cell Biology International, 2005. 29(6): p. 408-421.
    17. Gerecht, Sharon, Christopher J. Bettinger, Zhitong Zhang, Jeffrey T. Borenstein, Gordana Vunjak-Novakovic, and Robert Langer, The effect of actin disrupting agents on contact guidance of human embryonic stem cells. Biomaterials, 2007. 28(28): p. 4068-4077.
    18. Ball, Michael D., Una Prendergast, Claire O'Connell, and Richard Sherlock, Comparison of cell interactions with laser machined micron- and nanoscale features in polymer. Experimental and Molecular Pathology, 2007. 82(2): p. 130-134.
    19. Justesen, J., M. Lorentzen, L. K. Andersen, O. Hansen, J. Chevallier, C. Modin, A. Fuchtbauer, M. Foss, F. Besenbacher, M. Duch, and F. S. Pedersen, Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces. Journal of Biomedical Materials Research Part A, 2009. 89A(4): p. 885-894.
    20. Bruinink, Arend and Erich Wintermantel, Grooves affect primary bone marrow but not osteoblastic MC3T3-E1 cell cultures. Biomaterials, 2001. 22(18): p. 2465-2473.
    21. Simon, A. and M. C. Durrieu, Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron, 2006. 37(1): p. 1-13.
    22. Stevens, Alan and James Lowe, in Human Histology, 3th, Editor. 2006, Elsevier International Ltd.
    23. Ludwig, T., R. Kirmse, K. Poole, and U. S. Schwarz, Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Archiv European Journal of Physiology, 2008. 456(1): p. 29-49.
    24. Costa, K. D., Single-cell elastography: Probing for disease with the atomic force microscope. Disease Markers, 2004. 19(2-3): p. 139-154.
    25. Tan, J. L., J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(4): p. 1484-1489.
    26. Daily, B., E. L. Elson, and G. I. Zahalak, Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophysical Journal, 1984. 45(4): p. 671-682.
    27. Hochmuth, Robert M., Micropipette aspiration of living cells. Journal of biomechanics, 2000. 33(1): p. 15-22.
    28. Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 1970. 24(4): p. 156-159.
    29. Ashkin, A., J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987. 330(6150): p. 769-771.
    30. Butt, H. J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 2005. 59(1-6): p. 1-152.
    31. Hertz, H., Ueber die Beruhrung fester elastischer Korper. Journal fur die reine und angewandte Mathematik (Crelle's Journal), 1882. 1882(92): p. 156-171.
    32. Sneddon, I. N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science, 1965. 3(1): p. 47-57.
    33. Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo, Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent. Annals of Biomedical Engineering, 2005. 33(7): p. 963-971.
    34. Rosenbluth, M. J., W. A. Lam, and D. A. Fletcher, Force microscopy of nonadherent cells: A comparison of leukemia cell deformability. Biophysical Journal, 2006. 90(8): p. 2994-3003.
    35. Kuznetsova, T. G., M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity. Micron, 2007. 38(8): p. 824-833.
    36. Hinterdorfer, P., W. Baumgartner, H. J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(8): p. 3477-3481.
    37. Puech, P. H., K. Poole, D. Knebel, and D. J. Muller, A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy, 2006. 106(8-9): p. 637-644.
    38. Thie, M, R Rospel, W Dettmann, M Benoit, M Ludwig, H E Gaub, and H W Denker, Interactions between trophoblast and uterine epithelium: monitoring of adhesive forces. Human Reproduction, 1998. 13(11): p. 3211-3219.
    39. Atance, Joel, Michael J. Yost, and Wayne Carver, Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. Journal of Cellular Physiology, 2004. 200(3): p. 377-386.
    40. Hidalgo-Bastida, L. A. and S. H. Cartmell, Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: Enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Engineering - Part B: Reviews, 2010. 16(4): p. 405-412.
    41. K, Anselme, Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): p. 667-681.
    42. Bruce Alberts, Alexander Johnson, Molecular biology of the cell. 2002.
    43. Castoldi, M., M. Pistone, C. Caruso, A. Puddu, C. Filanti, D. Piccini, C. Tacchetti, and P. Manduca, Osteoblastic cells from rat long bone II: Adhesion to substrata and integrin expression in primary and propagated cultures. Cell Biology International, 1997. 21(1): p. 7-16.
    44. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF., Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. Biological Chemistry, 2000. 275(March 31): p. 9645-9652.
    45. Geisler, U., U. Hempel, C. Wolf, D. Scharnweber, H. Worch, and K. W. Wenzel, Collagen type I-coating of Ti6A14V promotes adhesion of osteoblasts. Journal of Biomedical Materials Research, 2000. 51(4): p. 752-760.
    46. Karakecili, A., C. Satriano, M. Gumusderelioglu, and G. Marletta, Relationship between the fibroblastic behaviour and surface properties of RGD-immobilized PCL membranes. Journal of Materials Science: Materials in Medicine, 2007. 18(2): p. 317-319.
    47. Sogo, Y., A. Ito, T. Matsuno, A. Oyane, G. Tamazawa, T. Satoh, A. Yamazaki, E. Uchimura, and T. Ohno, Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomedical Materials, 2007. 2(2): p. 116-123.
    48. Kuschel, C., H. Steuer, A. N. Maurer, B. Kanzok, R. Stoop, and B. Angres, Cell adhesion profiling using extracellular matrix protein microarrays. BioTechniques, 2006. 40(4): p. 523-531.
    49. Foster, T. E., B. L. Puskas, B. R. Mandelbaum, M. B. Gerhardt, and S. A. Rodeo, Platelet-rich plasma: From basic science to clinical applications. American Journal of Sports Medicine, 2009. 37(11): p. 2259-2272.
    50. Mutsaers, Steven E., Jill E. Bishop, Gus McGrouther, and Geoffrey J. Laurent, Mechanisms of tissue repair: from wound healing to fibrosis. The International Journal of Biochemistry & Cell Biology, 1997. 29(1): p. 5-17.
    51. Wong, Joyce Y., Jennie B. Leach, and Xin Q. Brown, Balance of chemistry, topography, and mechanics at the cell–biomaterial interface: Issues and challenges for assessing the role of substrate mechanics on cell response. Surface Science, 2004. 570(1–2): p. 119-133.
    52. Arima, Yusuke and Hiroo Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials, 2007. 28(20): p. 3074-3082.
    53. Cai, Kaiyong, Marion Frant, Jorg Bossert, Gerhard Hildebrand, Klaus Liefeith, and Klaus D. Jandt, Surface functionalized titanium thin films: Zeta-potential, protein adsorption and cell proliferation. Colloids and Surfaces B: Biointerfaces, 2006. 50(1): p. 1-8.
    54. Sarkar, Sumona, Manisha Dadhania, Patrick Rourke, Tejal A. Desai, and Joyce Y. Wong, Vascular tissue engineering: microtextured scaffold templates to control organization of vascular smooth muscle cells and extracellular matrix. Acta Biomaterialia, 2005. 1(1): p. 93-100.
    55. Zaari, N., P. Rajagopalan, S.  K Kim, A.  J Engler, and J.  Y Wong, Photopolymerization in Microfluidic Gradient Generators: Microscale Control of Substrate Compliance to Manipulate Cell Response. Advanced Materials, 2004. 16(23-24): p. 2133-2137.
    56. Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 21(7): p. 667-681.
    57. Bodas, Dhananjay and Chantal Khan-Malek, Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—An SEM investigation. Sensors and Actuators B: Chemical, 2007. 123(1): p. 368-373.
    58. Mata, Alvaro, Aaron Fleischman, and Shuvo Roy, Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems. Biomedical Microdevices, 2005. 7(4): p. 281-293.
    59. Fuard, D., T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectronic Engineering, 2008. 85(5–6): p. 1289-1293.
    60. Efimenko, Kirill, William E. Wallace, and Jan Genzer, Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science, 2002. 254(2): p. 306-315.
    61. Toworfe, George K., Russell J. Composto, Christopher S. Adams, Irving M. Shapiro, and Paul Ducheyne, Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. Journal of Biomedical Materials Research Part A, 2004. 71A(3): p. 449-461.
    62. Chung, Sung Hee and Junhong Min, Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents. Ultramicroscopy, 2009. 109(8): p. 861-867.
    63. Sharma, Vikash, Marshal Dhayal, Govind, S. M. Shivaprasad, and S. C. Jain, Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications. Vacuum, 2007. 81(9): p. 1094-1100.
    64. Lewis, Gregory T., Gregory R. Nowling, Robert F. Hicks, and Yoram Cohen, Inorganic Surface Nanostructuring by Atmospheric Pressure Plasma-Induced Graft Polymerization. Langmuir, 2007. 23(21): p. 10756-10764.
    65. N., Inagaki, Plasma surface modification and plasma polymerzation. Technomic publishing: Lancaster., 1996.
    66. Chu, P. K., J. Y. Chen, L. P. Wang, and N. Huang, Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 2002. 36(5-6).
    67. Xing, Rubo, Zhe Wang, and Yanchun Han, Embossing of polymers using a thermosetting polymer mold made by soft lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2003. 21(4): p. 1318-1322.
    68. Vozzi, Giovanni, Christopher Flaim, Arti Ahluwalia, and Sangeeta Bhatia, Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials, 2003. 24(14): p. 2533-2540.
    69. Xia, Y. and G. M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28(1): p. 153-184.
    70. Mata, A., E. J. Kim, C. A. Boehm, A. J. Fleischman, G. F. Muschler, and S. Roy, A three-dimensional scaffold with precise micro-architecture and surface micro-textures. Biomaterials, 2009. 30(27): p. 4610-4617.
    71. Naruse, K. Application of soft lithography to mechanobiology. in Micro-NanoMechatronics and Human Science, 2005 IEEE International Symposium on. 2005.
    72. Junjie, Chen, Zhang Weiping, Wu Zexi, Li Jinfeng, Jiang Chuan, Chen Wenyuan, Wu Xiaosheng, Cui Feng, and Liu Wu. Fabrication of optical fiber integrated micro-fluidic chips system by MEMS technology. in System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2011 International Conference on. 2011.
    73. Paranjape, M., J. Garra, S. Brida, T. Schneider, R. White, and J. Currie, A PDMS dermal patch for non-intrusive transdermal glucose sensing. Sensors and Actuators A: Physical, 2003. 104(3): p. 195-204.
    74. Owen, T. A., M. Aronow, V. Shalhoub, L. M. Barone, L. Wilming, M. S. Tassinari, M. B. Kennedy, S. Pockwinse, J. B. Lian, and G. S. Stein, Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of Cellular Physiology, 1990. 143(3): p. 420-430.
    75. Quarles, L. D., D. A. Yohay, L. W. Lever, R. Caton, and R. J. Wenstrup, Distinct proliferative and differentiated stages of murine MC3T3-E1 cells in culture: An in vitro model of osteoblast development. Journal of Bone and Mineral Research, 1992. 7(6): p. 683-692.
    76. Wennberg, C., L. Hessle, P. Lundberg, S. Mauro, S. Narisawa, U. H. Lerner, and J. L. Millan, Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. Journal of Bone and Mineral Research, 2000. 15(10): p. 1879-1888.
    77. Diniz, P., K. Shomura, K. Soejima, and G. Ito, Effects of Pulsed Electromagnetic Field (PEMF) Stimulation on Bone Tissue Like Formation Are Dependent on the Maturation Stages of the Osteoblasts. Bioelectromagnetics, 2002. 23(5): p. 398-405.
    78. Thompson, D. L., K. D. Lum, S. C. Nygaard, R. E. Kuestner, K. A. Kelly, J. M. Gimble, and E. E. Moore, The derivation and characterization of stromal cell lines from the bone marrow of p53(-/-) mice: New insights into osteoblast and adipocyte differentiation. Journal of Bone and Mineral Research, 1998. 13(2): p. 195-204.
    79. Lin, H. Y. and Y. J. Lin, In vitro effects of low frequency electromagnetic fields on osteoblast proliferation and maturation in an inflammatory environment. Bioelectromagnetics, 2011. 32(7): p. 552-560.
    80. Komori, T. and T. Kishimoto, Cbfa1 in bone development. Current Opinion in Genetics and Development, 1998. 8(4): p. 494-499.
    81. Rebelatto, C. K., A. M. Aguiar, M. P. Moretao, A. C. Senegaglia, P. Hansen, F. Barchiki, J. Oliveira, J. Martins, C. Kuligovski, F. Mansur, A. Christofis, V. F. Amaral, P. S. Brofman, S. Goldenberg, L. S. Nakao, and A. Correa, Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Experimental Biology and Medicine, 2008. 233(7): p. 901-913.
    82. Docheva, Denitsa, Daniela Padula, Cvetan Popov, Wolf Mutschler, Hauke Clausen-Schaumann, and Matthias Schieker, Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy. Journal of Cellular and Molecular Medicine, 2008. 12(2): p. 537-552.
    83. Kim, M. S., A. Y. Kim, K. J. Jang, J. H. Kim, J. B. Kim, and K. Y. Suh, Effect of nanogroove geometry on adipogenic differentiation. Nanotechnology, 2011. 22(49).
    84. McBeath, Rowena, Dana M. Pirone, Celeste M. Nelson, Kiran Bhadriraju, and Christopher S. Chen, Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Developmental Cell, 2004. 6(4): p. 483-495.
    85. AFM/LFM Instruction Manual. 1999: Digital Instruments Veeco Metrology Group.
    86. Costa, K. D. and F. C. P. Yin, Analysis of indentation: Implications for measuring mechanical properties with atomic force microscopy. Journal of Biomechanical Engineering, 1999. 121(5): p. 462-471.
    87. Fransiska, Swary and Ming Hua Ho, The effects of surface micro-pattern on osteoblastic cell's behavior, in Chemical Engineering. 2008, NTUST: Taipei.
    88. Zhou, Z. L., A. H. W. Ngan, B. Tang, and A. X. Wang, Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope. Journal of the Mechanical Behavior of Biomedical Materials, 2012. 8(0): p. 134-142.
    89. Wyss, Kristine, Cindy Y. Y. Yip, Zahra Mirzaei, Xiaofan Jin, Jan-Hung Chen, and Craig A. Simmons, The elastic properties of valve interstitial cells undergoing pathological differentiation. Journal of biomechanics, 2012. 45(5): p. 882-887.
    90. Pajerowski, J. D., K. N. Dahl, F. L. Zhong, P. J. Sammak, and D. E. Discher, Physical plasticity of the nucleus in stem cell differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(40): p. 15619-15624.
    91. Mazumder, A. and G. V. Shivashankar, Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. Journal of The Royal Society Interface, 2010. 7(SUPPL. 3): p. S321-S330.
    92. Docheva, D., D. Padula, C. Popov, W. Mutschler, H. Clausen-Schaumann, and M. Schieker, Researching into the cellular shape, volume and elasticity of mesenchymal stem cells, osteoblasts and osteosarcoma cells by atomic force microscopy: Stem Cells. Journal of Cellular and Molecular Medicine, 2008. 12(2): p. 537-552.
    93. Naguyen, Huu Tan and Ming Hua Ho, The influences of PDMS topography and hydrophilicity on DPSCs and UMR., in Chemical Engineering. 2011, NTUST: Taipei.
    94. Konno, Tomohiro, Naoki Kawazoe, Guoping Chen, and Yoshihiro Ito, Culture of mouse embryonic stem cells on photoimmobilized polymers. Journal of Bioscience and Bioengineering, 2006. 102(4): p. 304-310.
    95. Brammer, Karla S., Chulmin Choi, Christine J. Frandsen, Seunghan Oh, and Sungho Jin, Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomaterialia, 2011. 7(2): p. 683-690.
    96. Millati, Nuril and Ming Hua Ho, The effects of micro-grooves on gingival fibroblasts and osteoblast-like cells., in Chemical Engineering. 2009, NTUST: Taipei.
    97. Li, Q. S., G. Y. H. Lee, C. N. Ong, and C. T. Lim, AFM indentation study of breast cancer cells. Biochemical and Biophysical Research Communications, 2008. 374(4): p. 609-613.
    98. Simon, A., T. Cohen-Bouhacina, M. C. Porte, J. P. Aime, J. Amedee, R. Bareille, and C. Baquey, Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy. Cytometry Part A, 2003. 54A(1): p. 36-47.
    99. Darling, Eric M., Matthew Topel, Stefan Zauscher, Thomas P. Vail, and Farshid Guilak, Viscoelastic properties of human mesenchymally-derived stem cells and primary osteoblasts, chondrocytes, and adipocytes. Journal of biomechanics, 2008. 41(2): p. 454-464.

    QR CODE