簡易檢索 / 詳目顯示

研究生: 劉廷皓
Ting-Hao Liu
論文名稱: 新型腹腔鏡機器人手術器械系統
A Novel Robotic Laparoscopic Instrument System
指導教授: 郭進星
Chin-Hsing Kuo
口試委員: 林紀穎
Chi-Ying Lin
謝宏麟
Hung-Lin Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 手術機器人醫療器材手術器械機構設計機電整合
外文關鍵詞: surgical robot, medical device, surgical instrument, mechanism design, mechatronics
相關次數: 點閱:273下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提出一種新型腹腔鏡手術機器人器械,該器械具有末端腕部偏擺(pan)、夾取/剝離(grasping/dissecting)與自轉(roll)等三個自由度,且腕部可雙邊擺動以及夾爪可雙動開合。該傳動機構,具有運動解耦特性,即器械的三個自由度可分別由三顆馬達獨立控制,且彼此不互相影響。此外,本器械亦具有模組化功能,能快速地與驅動模組進行拆裝,進一步建構一主從動式(master-and-slave)機電整合控制系統,使用者可透過搖桿驅動器械的運動自由度。此系統未來可輕易整合於機器手臂上,形成一腹腔鏡微創手術機器人系統。最後,完成一系列的硬體測試與量測,包含新型器械之解耦測試與量測、系統重複性與重現性量測、傳動機構受力測試與夾取傳送功能測試等。實驗結果顯示,本新型器械之腕部擺動與夾爪運動的確互不影響,為運動解耦。在系統性能方面,腕部擺動之準確度與精密度最大誤差分別為1.327˚與0.055˚;而腕部在15˚至70˚之來回擺動以及夾爪在27˚至40˚之來回開合具有高重現性。實驗亦驗證本器械腕部可承受3 N之負載。


    This thesis presents a novel robotic laparoscopic instrument that has dual-side rotatable wrist and two-movable-jaw gripper. The new instrument has three degrees-of-freedom (DoF) including the pan rotation of the wrist, the grasping/dissecting of the gripper, and the roll rotation of the tool axis. Furthermore, the proposed instrument has a fully decoupled kinematics, i.e., the three DoFs are independently controlled by three actuations, respectively. Furthermore, the modularization of the proposed instrument was developed for quick docking on actuator module. We also built a master-and-slave mechatronic system for the instrument controlled by a joystick in master side. This mechatronic system can be easily integrated or implemented on common robotic arms. Finally, we performed a series of experiments for the built mechatronic system including the decoupled kinematics test and measurement, repeatability measurement, reproducibility measurement, force transmission ability test, and surgical manipulation test. The results show that the proposed instrument does possess a decoupled kinematics. The maximum errors in accuracy and precision of the tool tip motion (i.e., wrist) are 1.327˚ and 0.055˚, respectively. The system illustrates good reproducibility between 15˚ to 70˚ for wrist pan motion and between 27˚ to 40˚ for gripper motion. It also verified that the wrist can bear a 3-N payload.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的 1.4 論文架構 第二章 微創手術器械技術分析 2.1 微創手術簡介 2.2 器械之基本組成 2.3 技術分析 2.4 討論 2.5 小結 第三章 新型腹腔鏡機器人手術器械機構設計 3.1 設計目標 3.2 機構概念設計 3.3 具體設計 3.4 運動分析 3.5 小結 第四章 驅動模組機構設計 4.1 設計目標 4.2 機構概念設計 4.3 具體設計 4.4 小結 第五章 新型器械之受力模擬分析 5.1 問題說明 5.2 電腦輔助分析軟體介紹 5.3 力量分析 5.4 結構靜力分析 5.5 小結 第六章 機電整合系統 6.1 機電整合系統設計 6.2 機電整合系統實作 6.3 小結 第七章 實驗測試 7.1 量測系統架構 7.2 步階量測 7.3 解耦測試與量測 7.4 重複性(repeatability)量測 7.5 重現性(reproducibility)量測 7.6 傳動機構受力測試 7.7 夾取傳送功能測試 7.8 小結 第八章 結論與未來展望 8.1 結論 8.2 未來展望 參考文獻 附錄 微創手術器械介紹

    [1]Intuitive Surgical Inc., 2016; Available from: http://www.intuitivesurgical.com/.
    [2]Azimian, H., 2016, “Surigcal Robotic Tools,” In: Farhat, W. A., Drake, J. (Eds.), Bioengineering for Surgery: The Critical Engineer Surgeon Interface, Woodhead Publishing, Cambridge, UK, pp. 91-112.
    [3]Nagase, T., Sasaki, K., 2009, “Surgical Therapeutic Instrument,” US Patent No. US7494499.
    [4]Kim, K.-Y., Lee, J.-J., 2012, “Design and Evaluation of a Slave Manipulator with Roll-Pitch-Roll Wrist and Automatic Tool Loading Mechanism in Telerobotic Surgery,” International Journal of Medical Robotics and Computer Assisted Surgery, 8(4), pp. 421-435.
    [5]Haraguchi, D., Kanno, T., Tadano, K., Kawashima, K., 2015, “A Pneumatically Driven Surgical Manipulator with a Flexible Distal Joint Capable of Force Sensing,” IEEE/ASME Transactions on Mechatronics, 20(6), pp. 2950-2961.
    [6]Nicholas, D., Aranyi, E., Zvenyatsky, B., Matula, P., Remiszewski, S., Green, D., Bolanos, H., 2007, “Articulating Endoscopic Surgical Apparatus,” US Patent No. US20070162072.
    [7]Pan, B., Niu, G. J., Fu, Y. L., Xu, D. G., Wang, Y. S., 2014, “Design of a Novel Surgical Instrument for Minimally Invasive Robotic Surgery,” Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, 5-10 December, pp. 223-228.
    [8]Feng, M., Fu, Y. L., Pan, B., Zhao, X. D., 2012, “An Improved Surgical Instrument without Coupled Motions That Can Be Used in Robotic-Assisted Minimally Invasive Surgery,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 226(8), pp. 623-630.
    [9]Zhao, B., Nelson, C. A., 2013, “Decoupled Cable-Driven Grasper Design Based on Planetary Gear Theory,” ASME Journal of Medical Devices, 7(2), p. 020918.
    [10]Braun, M., 2012, “Surgical Instrument Comprising an Instrument Handle and Zero Point Adjustment,” US Patent No. US8267958.
    [11]Viola, F. J., 2013, “Articulating Joint for Surgical Instruments,” US Patent No. US8556151.
    [12]Grace, K., 2014, “Rigidly-Linked Articulating Wrist with Decoupled Motion Transmission,” US Patent No. US8845681.
    [13]Arata, J., Mitsuishi, M., Warisawa, S. i., Tanaka, K., Yoshizawa, T., Hashizume, M., 2005, “Development of a Dexterous Minimally-Invasive Surgical System with Augmented Force Feedback Capability,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2-6 August, pp. 3207-3212.
    [14]Hong, M. B., Jo, Y.-H., 2014, “Design of a Novel 4-Dof Wrist-Type Surgical Instrument with Enhanced Rigidity and Dexterity,” IEEE/ASME Transactions on Mechatronics, 19(2), pp. 500-511.
    [15]許博欽、黃思誠,2009,婦科腹腔鏡手術精要,國立臺灣大學出版中心,台北。
    [16]Karl Storz Inc., 2016; Available from: http://www.karlstorz.com.
    [17]Kanno, T., Haraguchi, D., Yamamoto, M., Tadano, K., Kawashima, K., 2015, “A Forceps Manipulator with Flexible 4-Dof Mechanism for Laparoscopic Surgery,” IEEE/ASME Transactions on Mechatronics, 20(3), pp. 1170-1178.
    [18]Faulhaber Co., 2016; Available from: http://www.faulhaber.com/.
    [19]陳天青、廖信德、戴任詔,2005,機電整合,高立圖書有限公司,台北。
    [20]Northern Digital Inc., 2016; Available from: http://www.ndigital.com/.
    [21]Wiles, A. D., Thompson, D. G., Frantz, D. D., 2004, “Accuracy Assessment and Interpretation for Optical Tracking Systems,” Proceedings of the SPIE, 5367, pp. 421-432.
    [22]Jelínek, F., Arkenbout, E. A., Henselmans, P. W. J., Pessers, R., Breedveld, P., 2014, “Classification of Joints Used in Steerable Instruments for Minimally Invasive Surgery—A Review of the State of the Art,” ASME Journal of Medical Devices, 9(1), pp. 010801.
    [23]Madhani, A. J., Salisbury, J. K., 1998, “Wrist Mechanism for Surgical Instrument for Performing Minimally Invasive Surgery with Enhanced Dexterity and Sensitivity,” US Patent No. US5797900.
    [24]Yim, J. W., 2012, “Surgical Instrument,” US Patent No. US20120330287.
    [25]Moreyra, M. R., 2005, “Wrist with Decoupled Motion Transmission,” US Patent No. US6969385.
    [26]康耀鴻、張益愷、康肇元,2013,關節式微創手術夾具,中華民國專利,第I407936號。
    [27]Steege, A. T. C., 2014, “Surgical Tool,” US Patent No. US20140188159.
    [28]Conlon, S. P., 2012, “Rotational Coupling Device for Surgical Instrument with Flexible Actuators,” US Patent No. US8157834.
    [29]Milani, M., Fiorini, P., Reppele, L., 2011, “Instrument for Robotic Surgery,” European Patent No. EP2364825.
    [30]Yamashita, H., Kim, D., Hata, N., Dohi, T., 2003, “Multi-Slider Linkage Mechanism for Endoscopic Forceps Manipulator,” Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Nevada, USA, 27-31 October, pp. 2577-2582.
    [31]Ishii, C., Kobayashi, K., Kamei, Y., Nishitani, Y., 2010, “Robotic Forceps Manipulator with a Novel Bending Mechanism,” IEEE/ASME Transactions on Mechatronics, 15(5), pp. 671-684.
    [32]Choi, H., Kwak, H.-S., Lim, Y.-A., Kim, H.-J., 2014, “Surgical Robot for Single-Incision Laparoscopic Surgery,” IEEE Transactions on Biomedical Engineering, 61(9), pp. 2458-2466.
    [33]Ma, R., Wu, D., Yan, Z., Du, Z., Li, G., 2010, “Research and Development of Micro-Instrument for Laparoscopic Minimally Invasive Surgical Robotic System,” Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 14-18 December, pp. 1223-1228.
    [34]Arata, J., Kogiso, S., Sakaguchi, M., Nakadate, R., Oguri, S., Uemura, M., Byunghyun, C., Akahoshi, T., Ikeda, T., Hashizume, M., 2015, “Articulated Minimally Invasive Surgical Instrument Based on Compliant Mechanism,” International Journal of Computer Assisted Radiology and Surgery, 10(11), pp. 1837-1843.
    [35]Manzo, S. E., Kerver, L., 2015, “Fusing and Cutting Surgical Instrument and Related Methods,” US Patent No. US9055961.
    [36]Manzo, S. E., 2012, “Methods for Replaceable End-Effector Cartridges,” US Patent No. US8105320.
    [37]Dikaiakos, G., Tzemanaki, A., Pipe, A. G., Dogramadzi, S., 2014, “Mechatronic Implementation in Minimally Invasive Surgical Instruments,” The 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, São Paulo, Brazil, 12-15 August, pp. 357-362.
    [38]Shin, W.-H., Kwon, D.-S., 2013, “Surgical Robot System for Single-Port Surgery with Novel Joint Mechanism,” IEEE Transactions on Biomedical Engineering, 60(4), pp. 937-944.
    [39]Manzo, S., Heaton, L., 2013, “Wristed Robotic Surgical Tool for Pluggable End-Effectors,” US Patent No. US8398634.
    [40]Lee, W., Chamorro, A., Weitzner, B., 2009, “Robotically Controlled Medical Instrument with a Flexible Section,” US Patent No. US7608083.
    [41]Simaan, N., 2005, “Snake-Like Units Using Flexible Backbones and Actuation Redundancy for Enhanced Miniaturization,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18-22 April, pp. 3012-3017.
    [42]Brock, D. L., 2012, “Interchangeable Surgical Instrument,” US Patent No. US8303576.
    [43]Luo, H., Wang, S., 2011, “Multi-Manipulation with a Metamorphic Instrumental Hand for Robot-Assisted Minimally Invasive Surgery,” Proceedings of the 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, China, 22-25 May, pp. 363-368.
    [44]Beira, R., Clavel, R., Bleuler, H., 2013, “Mechanical Manipulator for Surgical Instruments,” US Patent No. US20130304084.
    [45]Steege, A. T. C., Cobb, K. W., McKinley, I. M., Sievert, D. M., 2014, “Surgical Tool,” US Patent No. US8915940.
    [46]Suzuta, T., “Surgical Operation Apparatus,” US Patent No. US6592572.
    [47]Suzuki, T., Nakazawa, K., Morikawa, Y., Kitajima, M., 2006, “Development of Forceps with Multi-Doe for Minimally Invasive Surgery,” Transactions of the Japan Society of Mechanical Engineers, Part C, 72(6), pp. 1915-1920.
    [48]Moradi Dalvand, M., Shirinzadeh, B., Shamdani, A. H., Smith, J., Zhong, Y., 2014, “An Actuated Force Feedback-Enabled Laparoscopic Instrument for Robotic-Assisted Surgery,” International Journal of Medical Robotics and Computer Assisted Surgery, 10(1), pp. 11-21.
    [49]Hong, M. B., Jo, Y.-H., 2011, “Prototype Design of Robotic Surgical Instrument for Minimally Invasive Robot Surgery,” 7th Asian Conference on Computer Aided Surgery, Bangkok, Thailand, August, Vol. 3, pp. 20-28.
    [50]Lee, C., Park, W. J., Kim, M., Noh, S., Yoon, C., Lee, C., Kim, Y., Kim, H. H., Kim, H. C., Kim, S., 2014, “Pneumatic-Type Surgical Robot End-Effector for Laparoscopic Surgical-Operation-by-Wire,” BioMedical Engineering OnLine.
    [51]Paik, J., Morel, G., Vidal, C., Henri, P., 2014, “Surgical Instrument,” US Patent No. US8845622.
    [52]Woolfson, S. B., Joshi, S., Boulnois, J. L., LePage, A. A., Devlin, C., 2014, “Articulable Surgical Instrument,” US Patent No. US8900267.
    [53]Danitz, D. J., Gold, A. C., 2009, “Articulating Mechanism for Remote Manipulation of a Surgical or Diagnostic Tool,” US Patent No. US7615066.
    [54]Bergamasco, M., Salsedo, F., Spinelli, S., Fontana, M., 2008, “Remotely Actuated Robotic Wrist,” US Patent No. US20080196533.
    [55]Murphy, T. E., Nixon, M. M., 2013, “Surgical Instrument Wrist,” US Patent No. US8540748.
    [56]Kim, C. S., Park, C.-W., Kim, B.-S., Song, J.-B., Hwang, J.-H., 2012, “Design of Robotic Surgical Instrument for Minimally Invasive Surgical Robot System,” The 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 17-21 October, pp. 1720-1723.
    [57]Nai, T. Y., Herder, J. L., Tuijthof, G. J. M., 2011, “Steerable Mechanical Joint for High Load Transmission in Minimally Invasive Instruments,” ASME Journal of Medical Devices, 5(3), p. 034503.
    [58]Kwon, Y., 2015, “Articulation for Surgical Equipment Using Ball Joint,” US Patent No. US20150047451.
    [59]Dewaele, F., Mabilde, C., Blanckaert, B., “Steerable Tube,” US Patent No. US8398587.
    [60]Wales, K. S., Paraschac, J. F., Stefanchik, D., 1997, “Articulating Surgical Instrument,” US Patent No. US5702408.
    [61]Wallace, D. T., Anderson, S. C., Manzo, S., 2010, “Platform Link Wrist Mechanism,” US Patent No. US7691098.
    [62]Arata, J., Saito, Y., Fujimoto, H., 2010, “Outer Shell Type 2 Dof Bending Manipulator Using Spring-Link Mechanism for Medical Applications,” 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, 3-8 May, pp. 1041-1046.
    [63]Yamashita, H., Iimura, A., Aoki, E., Suzuki, T., Nakazawa, T., Kobayashi, E., Hashizume, M., Sakuma, I., Dohi, T., 2005, “Development of Endoscopic Forceps Manipulator Using Multi-Slider Linkage Mechanisms,” Proceeding of The 1st Asian Symposium on Computer Aided Surgery-Robotic and Image guided Surgery, Ibaraki, Japan, 28 April.
    [64]Dohi, T., Hata, N., Yamashita, H., Iimura, A., Nakazawa, T., 2007, “Bending Action Member, Multi-Slider Linkage Mechanism, Actuator and Manipulator,” US Patent No. US20070219581.
    [65]Larkin, D. Q., Blumenkranz, S. J., Kumar, R., 2012, “Modular Force Sensor,” US Patent No. US8281670.
    [66]Blumenkranz, S. J., Lockyer, B. J., 2014, “Wireless Force Sensor on a Distal Portion of a Surgical Instrument and Method,” US Patent No. US8628518.
    [67]Ullrich, C., Modarres, A., Gregorio, P., Shimek, C., 2013, “Surgical Stapler Having Haptic Feedback,” US Patent No. US8523043.
    [68]Lee, D.-H., Kim, U., Gulrez, T., Yoon, W. J., Hannaford, B., Choi, H.-R., 2016, “A Laparoscopic Grasping Tool with Force Sensing Capability,” IEEE/ASME Transactions on Mechatronics, 21(1), pp. 130-141.
    [69]Li, K., Pan, B., Zhang, F., Gao, W., Fu, Y., Wang, S., 2016, “A Novel 4-Dof Surgical Instrument with Modular Joints and 6-Axis Force Sensing Capability,” International Journal of Medical Robotics and Computer Assisted Surgery, In press.
    [70]Hong, M. B., Jo, Y.-H., 2012, “Design and Evaluation of 2-Dof Compliant Forceps with Force-Sensing Capability for Minimally Invasive Robot Surgery,” IEEE Transactions on Robotics, 28(4), pp. 932-941.
    [71]Cunningham, J. S., 2012, “Method of Transferring Pressure in an Articulating Surgical Instrument,” US Patent No. US8257387.
    [72]Krzyzanowski, J., 2013, “End Effector Assembly with Increased Clamping Force for a Surgical Instrument,” US Patent No. US8394120.
    [73]Blumenkranz, S. J., 2013, “Cleaning of a Surgical Instrument Force Sensor,” US Patent No. US8465474.
    [74]陳達仁,2013,專利檢索與專利分析,經濟部智慧財產局,台北。

    QR CODE