簡易檢索 / 詳目顯示

研究生: 張軒誠
Hsuan-Chen Chang
論文名稱: 石墨烯與奈米碳管複合結構之研究
The study of graphene and carbon nanotube composite
指導教授: 李奎毅
Kuei-Yi Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
趙良君
Liang-Chiun Chao
陳瑞山
Reul-San Chen
何清華
Ching-Hwa Ho
程光蛟
Kwong-Kau Tiong
施文欽
Wen-Ching Shih
邱博文
Po-Wen Chiu
許宏彬
Hung-Pin Hsu
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 100
中文關鍵詞: 石墨烯奈米碳管
外文關鍵詞: graphene, carbon nanotube
相關次數: 點閱:464下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用氧氣吸附於石墨烯表面造成其內部之載子濃度改變與電阻率變化,來判斷石墨烯半導體之pn特性。實驗中,利用熱化學氣相沉積法製作石墨烯,並通入不同濃度之氨氣進行改質。一般而言,石墨烯在吸附空氣中之氧氣或水氣後,會變成p-type半導體。而在製作石墨烯時通入氨氣進行氮摻雜,會使石墨烯轉變成n-type半導體。在量測中,我們利用氧氣吸附於石墨烯表面會捕捉表面電子之特性,在氧氣吸附於p-type石墨烯中會造成電流上升;而當氧氣吸附於n-type中會造成電流下降。其原因是在氧氣吸附在p-type材料時,材料內部多數載子為電洞,氧氣捕捉表面電子後,會產生更多電洞,因此電流上升。反之,在n-type材料中多數載子為電子,當電子被氧氣捕捉後,造成其電流下降。此外,我們也將石墨烯材料製作成電晶體元件進行量測,當未摻雜之p-type石墨烯其Dirac Point大約落在+85 V,其電洞濃度大於電子濃度;而隨著氮含量上升,其Dirac Point逐漸位移至-30 V,而電子濃度則大於電洞濃度。因此,本實驗除了成功地對於石墨烯進行改質,也證明利用氧氣吸附之特性可以用來辨別其半導體pn之特性。另外,本論文亦將奈米碳管成長於石墨烯上,利用一維的奈米碳管與二維的石墨烯做結合,成功製造出三維的複合材料。其優點為:(1)在接面結構上為碳-碳鍵結,可以有效降低接面阻抗,(2)增加電子在元件中傳輸速度。並將此三維結構材料應用於場電子發射元件與氣體感測。我們以石墨烯取代ITO玻璃做為場電子發射元件之陽極來接收電子,並以石墨烯上成長奈米碳管陣列為場電子發射端,結合為全碳式場電子發射元件,並量測其特性。實驗結果顯示,當外加電場為2.7 V/um時,其場電子發射元件電流密度可達0.1 mA/cm2。另外在螢光量測中,元件呈現出均勻地發光,證明此全碳式場電子發射元件在顯示器應用方面有良好的性質。在本論文,我們亦利用石墨烯之同素異形體的奈米碳片做為電極並應用於電雙層電容器。在此實驗中,藉由奈米碳片的高比表面積與多孔性,提升了電極與電解液之接觸面積。另外,在奈米碳片表面批覆一層鎳薄膜,再利用熱退火與氧電漿處理方式,使鎳薄膜轉變成氧化鎳薄膜。藉由氧化鎳之僞電容特性使奈米碳片/氧化鎳複合電極擁有極佳的比電容值與良好的穩定性。


    Abstract
    In this thesis, we could precisely confirm the semiconducting type of graphene by the changing of interior carrier concentration and resistivity when O2 gas adsorbed onto graphene surface. Graphene was synthesized onto copper foil and modified by introducing different flow rates of NH3 during graphene synthesis using thermal chemical vapor deposition (TCVD) at atmospheric pressure. Generally, graphene will become p-type semiconductor after adsorbing the O2 or steam in the air, while doping nitrogen into graphene can change it to n-type semiconductor. The O2 molecules could capture electrons from graphene when they adsorbed onto graphene surface. Therefore, for the p-type graphene, which the main carrier is hole, the current will consequently increase due to the electrons are captured by the adsorption O2 molecules and therefore enhances the hole concentration. On the contrary, the current of the n-type graphene will decrease while the electrons, the main carriers, are captured by the O2 molecules on the surface resulting in the reduction of the electron concentration. Moreover, we also measured the Dirac point of graphene-based FETs to confirm whether the graphene is p- or n-type. The Dirac point of pristine graphene is located at +85 V indicating the hole concentration is larger than the electron concentration. As the nitrogen content of graphene increased, the Dirac point shifts negatively to -30 V, which means that the electron concentration is larger than the hole concentration. As a result, we have not only successfully modified graphene by introducing NH3 during the growing process, but also demonstrated that the O2 gas adsorption measurement is a quite helpful method to identify the graphene's semiconducting type. Besides, a hybrid 3-D structure, CNTs/graphene, was fabricated through the combination of highly conductive graphene (2-D) and photolithographically patterned CNT (1-D), which has the following advantages: (1) The C-C bonding of the interface can effectively lower the impedance; (2) The structure can enhance the electron transmission speed in the device. Using this structure, the field emission device (FED) and gas sensing device were applied. Highly crystalline graphene which can replace the ITO was used as the anode of the FED. Besides, the hexagonal close-packed bundle arrays of VACNTs were successfully synthesized on graphene and used as a field emission emitter. The field emission current density can reach 10-1 mA/cm2 under the applied electric field of 2.7 V/m. Combining the hybrid structure of VACNT and graphene, the all carbon-based FEDs showed stable electron emission properties and uniform luminance, demonstrating the suitable application for FED. On the other hand, we used the carbon nanowall (CNW), an allotrope of carbon, to be the electrode for electric double layer capacitor application. The synthesized CNWs on the carbon cloth surface presented high number density, high direct aspect and large surface area, which can increase the reactive surface between the electrode and electrolyte. Besides, it is known that the NiO possesses certain properties such as high electrochemical stability and quickly reversible redox reaction at the electrode surface. The NiO nanostructures were formed onto the CNWs surface uniformly by the vacuum annealing process and oxygen plasma treatment. The electrochemical measurements demonstrated that the NiO/CNWs/carbon cloth performed high specific capacitance and good stability.

    Contents Abstract-----------------------------------------------------------------------I Acknowledgement----------------------------------------------------------------V Contents----------------------------------------------------------------------VI Figure Captions----------------------------------------------------------------X Table Captions--------------------------------------------------------------XVII Chapter 1 Introduction---------------------------------------------------------1 1.1 Graphene-------------------------------------------------------------------2 1.1.1 History of Graphene------------------------------------------------------2 1.1.2 Crystal Structure--------------------------------------------------------3 1.1.3 Bind Structure-----------------------------------------------------------5 1.1.4 Phonon Dispersion----------------------------------------------------------- 6 1.1.5 Raman Spectroscopy-------------------------------------------------------6 1.1.6 Formation Method---------------------------------------------------------8 1.2 Carbon Nanotube-----------------------------------------------------------10 1.2.1 History of Carbon Nanotube----------------------------------------------10 1.2.2 Crystal Structure-------------------------------------------------------11 1.2.3 Properties of Carbon Nanotube-------------------------------------------13 1.3 Motivation----------------------------------------------------------------14 1.3.1 Gas Adsorption Effect on Graphene and Graphene-based Field Effect Transistor--------------------------------------------------------------------14 1.3.2 CNT/Graphene Composite Structure for Field Emission Device--------------21 1.3.3 NiO Nanostructure-Carbon Nanowall Composites Grown on Carbon Cloth for EDLC--------------------------------------------------------------------------24 Chapter 2 Experimental Methodology--------------------------------------------34 2.1 Experimental Procedure----------------------------------------------------34 2.2 Experimental Process------------------------------------------------------35 2.2.1 Synthesis of Pristine Graphene by TCVD----------------------------------35 2.2.2 Synthesis of Nitrogen-Doped Graphene by TCVD----------------------------38 2.2.3 Graphene Transfer-------------------------------------------------------39 2.3 Synthesis of VACNT Bundle Arrays/Graphene by TCVD-------------------------40 2.3.1 Photolithology Process--------------------------------------------------40 2.3.2 Electron Beam Evaporator------------------------------------------------41 2.3.3 Growth of VACNT on Graphene---------------------------------------------42 2.4 Characterization Techniques-----------------------------------------------43 2.4.1 High-Resolution Transmission Electron Microscope (JEOL 2000FXII)---------------------------------------------------------------------- 43 2.4.2 Scanning Electron Microscope (HITACHI S-3000H)----------------- 44 2.4.3 X-Ray Photoelectron Spectroscope (VG ESCA Scientific Theta Probe)------45 2.4.4 Raman Spectroscope (RENISHAW inVia)-------------------------------------45 2.4.5 Electrical Characteristics Measurement----------------------------------46 2.4.6 Gas Sensing Measurement-------------------------------------------------47 Chapter 3 Gas Adsorption Effect on Graphene and Graphene-Based FET Fabrication--------------------------------------------------------------------------------48 3.1 Experimental Procedure----------------------------------------------------49 3.2 Crystallization Structure and Morphology of Graphene----------------------50 3.3 Raman Analysis of Graphene------------------------------------------------51 3.3.1 Raman Analysis of Pristine Graphene-------------------------------------51 3.3.2 Raman Analysis of Nitrogen-Doped Graphene-------------------------------52 3.4 X-Ray Photoelectron Spectroscopy Analysis of Nitrogen-Doped Graphene------53 3.5 Gas Adsorption Effect on Nitrogen-Doped Graphene--------------------------60 3.6 Field Effect Transistor Electrical Characterization of Nitrogen-Doped Graphene----------------------------------------------------------------------64 3.7 Gas Adsorption Effect on Defective Graphene-------------------------------68 3.8 Summary-------------------------------------------------------------------69 Chapter 4 VACNT/Graphene Composite Structure for FED and Gas Sensing Properties-------------------------------------------------------------------------------72 4.1 Experimental Procedure----------------------------------------------------73 4.2 Crystallization Structure and Morphology of CNT---------------------------75 4.3 Raman Analysis of CNT-----------------------------------------------------77 4.4 Field Emission Analysis---------------------------------------------------78 4.5 Fluorescence Test---------------------------------------------------------80 4.6 Stability Test------------------------------------------------------------81 4.7 Gas Sensing Properties of CNTs/Graphene Structure-------------------------82 4.8 Summary-------------------------------------------------------------------83 Chapter 5 NiO Nanostructure-CNW Composites Grown on Carbon Cloth for EDLC-------------------------------------------------------------------------------------85 5.1 Experimental Procedure----------------------------------------------------86 5.2 Crystallization Structure and Morphology----------------------------------87 5.3 Raman Analysis of CNW-----------------------------------------------------88 5.4 Cyclic Voltammetry Analysis-----------------------------------------------89 5.5 Galvanostatic Charge-Discharge Analysis-----------------------------------90 5.6 Summary-------------------------------------------------------------------92 Chapter 6 Conclusions---------------------------------------------------------95 Publication List--------------------------------------------------------------97

    Ch. 1. Reference
    [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [3] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
    [4] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
    [5] J. C. Charlier, J. P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B, vol. 46, pp. 4531-4540, 1992.
    [6] P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett., vol. 10, pp. 4285-4294, 2010.
    [7] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon., vol. 4, pp. 611-622, 2010.
    [8] L. M. Malard, M. A. Pimenta, G. Dresslhaus, and M. S. Dresslhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, pp. 51-87, 2009.
    [9] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Cond. Matter, vol. 20, pp. 323202-323228, 2008.
    [10] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapor deposition of graphene on copper,” J. Mat. Chem., vol. 21, pp. 3324-3334, 2011.
    [11] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
    [12] R. Saito, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.
    [13] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, pp. 1312-1314, 2009.
    [14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature, vol. 438, pp. 197-200, 2005.
    [15] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
    [16] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, “First-principles studies of water adsorption on graphene: The role of the substrate,” Appl. Phys. Lett., vol. 93, pp. 202110-1-2020110-3, 2008.
    [17] X.-D. Chen, Z.-B. Liu, C.-Y. Zheng, F. Xing, X.-Q. Yan, Y. Chen, and J.-G. Tian, “High-quality and efficient transfer of large-area graphene films onto different substrates,” Carbon, vol. 56, pp. 271-278, 2013.
    [18] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science, vol. 324, pp. 768-771, 2009.
    [19] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [20] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density,” Nano Lett., vol. 10, pp. 4863-4868, 2010.
    [21] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor devices based on graphene materials,” J. Phys. Chem. C, vol. 113, pp. 13103-17107, 2009.
    [22] D.-W. Zhang, X.-D. Li, H.-B. Li, S. Chen, Z. Sun, X.-J. Yin, and S.-M. Huang, “Graphene-based counter electrode for dye-sensitized solar cells,” Carbon, vol. 49, pp. 5382-5388, 2011.
    [23] S. Basu and P. Bhattacharyya, “Recent developments on graphene and graphene oxide based solid state gas sensors,” Sens. Actuators B, vol. 173, pp. 1-21, 2012.
    [24] H.-J. Yoon, D.-H. Jun, J.-H. Yang, Z. Zhou, S.-S. Yang, and M. M.-C. Cheng, “Carbon dioxide gas sensor using a graphene sheet,” Sens. Actuators B, vol. 157, pp. 310-313, 2011.
    [25] Y.-F. Lu, S.-T. Lo, J.-C. Lin, W. Zhang, J.-Y. Lu, F.-H. Liu, C.-M. Tseng, Y.-H. Lee, C.-T. Liang, and L.-J. Li, “Nitrogen-doped graphene sheets grown by chemical vapor deposition: Synthesis and influence of nitrogen impurities on carrier transport,” ACS Nano, vol. 7, pp. 6522-6532, 2013.
    [26] A. Kaniyoor, R. I. Jafri, T. Arockiadoss, and S. Ramaprabhu, “Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor,” Nanoscale, vol. 1, pp. 382-386, 2009.
    [27] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors,” Science, vol. 287, pp. 622-625, 2000.
    [28] F. Chaabouni, M. Abaab, and B. Rezig, “Metrological characteristics of ZNO oxygen sensor at room temperature,” Sens. Actuators B, vol. 100, pp. 200-204, 2004.
    [29] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, pp. 652-655, 2007.
    [30] R. K. Joshi, H. Gomez, F. Alvi, and A. Kumar, “Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions,” J. Phys. Chem. C, vol. 114, pp. 6610-6613, 2010.
    [31] K. Urita, S. Seki, S. Utsumi, D. Noguchi, H. Kanoh, H. Tanaka, Y. Hattori, Y. Ochiai, N. Aoki, M. Yudasaka, S. Iijima, and K. Kaneko, “Effects of gas adsorption on the electrical conductivity of single-wall carbon nanotube,” Nano Lett., vol. 6, pp. 1325-1328, 2006.
    [32] J. Dai, J. Yuan, and P. Giannozzi, “Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study,” Appl. Phys. Lett., vol. 95, pp. 232105-1-232105-3, 2009.
    [33] Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, “Controllable graphene N-doping with ammonia plasma,” Appl. Phys. Lett., vol. 96, pp. 133110-1-133110-3, 2010.
    [34] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
    [35] S. Uemura, J. Yotani, T. Nagasako, H. Kurachi, H. Yamada, T. Ezaki, T. Maesoba, T. Nakao, Y. Saito, and M. Yumura, “Large-area FEDs with carbon-nanotube emitter,” J. Soc. Inf. Display, vol. 11, pp. 145-153, 2003.
    [36] J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, “Field emission from carbon nanotubes for displays,” Diam. Relat. Mater., vol. 3, pp. 1184-1189, 2000.
    [37] F.-G. Zeng, C.-C. Zhu, W. Liu, and X. Liu, “The fabrication and operation of fully printed carbon nanotube field emission displays,” Microelectron. J., vol. 37, pp. 495-499, 2006.
    [38] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes-The route toward application,” Science, vol. 297, pp. 787-792, 2002.
    [39] S.-Y. Chen, H.-Y. Miao, J.-T. Lue, and M. S. Ouyang, “Fabrication and field emission property studies of multiwall carbon nanotubes,” J. Phys. D: Appl. Phys., vol. 37, pp. 273-278, 2004.
    [40] P. Liu, Q. Sun, F. Zhu, K. Jiang, L. Liu, Q. Li, and S. Fan, “Measuring the work function of carbon nanotubes with thermionic method,” Nano Lett., vol. 8, pp. 647-651, 2008.
    [41] N. G. Sahoo, Y.-C. Jung, H.-J. Yoo, and J.-W. Cho, “Influence of carbon nanotubes and polypyrrole on the thermal, mechanical and electroactive shape-memory properties of polyurethane nanocomposites,” Compos. Sci. Technol., vol. 67, pp. 1920-1929, 2007.
    [42] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard, and K. Kern, “Scanning field emission from patterned carbon nanotubes films,” Appl. Phys. Lett., vol. 76, pp. 2071-2073, 2000.
    [43] Y. C. Choi, Y. M. Shin, D. J. Bae, S. C. Lim, Y. H. Lee, and B. S. Lee, “Pattern growth and field emission properties of vertically aligned carbon nanotubes,” Diam. Relat. Mater., vol. 10, pp. 1457-1464, 2001.
    [44] T.-Y. Tsai, C.-Y. Lee, N.-H. Tai, and W.-H. Tuan, “Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices,” Appl. Phys. Lett., vol. 95, pp. 013107-1-013107-3, 2009.
    [45] J. Xiong, Z. Zheng, X. Qin, M. Li, and X. Wang, “The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite,” Carbon, vol. 44, pp. 2701-2707, 2006.
    [46] J. H. Choi, J. H. Park, J. S. Moon, J. W. Nam, J. B. Yoo, C. Y. Park, J. H. Park, C. G. Lee, and D. H. Choe, “Fabrication of carbon nanotube emitter on the flexible substrate,” Diam. Relat. Mater., vol. 15, pp. 44-48, 2006.
    [47] I. Lahiri, V. P. Verma, and W. Choi, “An all-graphene based transparent and flexible field emission device,” Carbon, vol. 49, pp. 1614-1619, 2011.
    [48] Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S. A. Chua, “A mechanical assessment of flexible optoelectronic,” Thin Solid Films, vol. 394, pp. 201-205, 2001.
    [49] A. Kumar and C. Zhou, “The race to replace Tin-doped Indium Oxide: Which material will win?” ACS Nano, vol. 4, pp. 11-14, 2010.
    [50] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, “Graphene-based composite materials,” Nature, vol. 442, pp. 282-286, 2006.
    [51] C. Gomez-Navarro, M. Burghard, and K. Kern, “Elastic properties of chemically derived single graphene sheets,” Nano Lett., vol. 8, pp. 2045-2049, 2008.
    [52] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, “Carbon materials for chemical capacitive energy storage,” Adv. Mater., vol. 23, pp. 4828-4850, 2011.
    [53] S. Mitani, S. I. Lee, K. Saito, Y. Korai, and I. Mochida, “Contrast structure and EDLC performances of activated spherical carbon with medium and large surface areas,” Electrochim. Acta, vol. 51 pp. 5487-5493, 2006.
    [54] S. Wen, M. Jung, O. S. Joo, and S. I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys., vol. 6, pp. 1012-1015, 2006.
    [55] P. Justin and G. R. Rao, “CoS spheres for high-rate electrochemical capacitive energy storage application,” Int. J. Hydrogen Energy, vol. 35 pp. 9709-9715, 2010.
    [56] Z. Sun, Z. Liu, B. Han, S. Miao, J. Du, and Z. Miao, “Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethylamine,” Carbon, vol. 44, pp. 888-893, 2006.
    [57] C.-C. Liu, D.-S. Tsai, D. Susanti, W.-C. Yeh, Y.-S. Huang, and F.-J. Liu, “Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods,” Electrochim. Acta, vol. 55, pp. 5768-5774, 2010.
    [58] G.-H. Deng, X. Xiao, J.-H. Chen, X.-B. Zeng, D.-L. He, and Y.-F. Kuang, “A new method to prepare RuO2.xH2O/carbon nanotube composite for electrochemical capacitor,” Carbon, vol. 43, pp. 1566-1569, 2005.
    [59] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, pp. 3498-3502, 2008.
    [60] Y.-M. Chen, C.-A. Chen, Y.-S. Huang, K.-Y. Lee, and K.-K. Tiong, “Synthesis of IrO2 nanocrystals on carbon nanotube bundle arrays and their field emission characteristics,” J. Alloys Compd., vol. 487, pp. 659-664, 2009.
    [61] H.-R. Byon, S.-W. Lee, S. Chen, P. T. Hammond, and S.-H. Yang, “Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors,” Carbon, vol. 49, pp. 457-467, 2011.
    [62] B. Tao, J. Zhang, F. Miao, S. Hui, and L.-J. Wan, “Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors,” Electrochim. Acta, vol. 55, pp. 5258-5262, 2010.
    [63] U. M. Patil, R. R. Salunkhe, K. V. Gurav, and C. D. Lokhande, “Chemically deposited nanocrystalline NiO thin films for supercapacitor application,” Appl. Sur. Sci., vol. 255, pp. 2603-2607, 2008.
    [64] P. A. Nelson and J. R. Owen, “A high-performance supercapacitor/battery hybrid incorporating template mesoporous electrodes,” J. Electrochem. Soc., vol. 150, pp. 1313-1317, 2003.

    Ch. 3. Reference
    [1] Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, “Controllable graphene N-doping with ammonia plasma,” Appl. Phys. Lett., vol. 96, pp. 13310-1-13310-3, 2010.
    [2] F. Chaabouni, M. Abaab, and B. Rezig, “Metrological characteristics of ZNO oxygen sensor at room temperature,” Sens. Actuators B, vol. 100, pp. 200-204, 2004.
    [3] A. Kaniyoor and S. Ramaprabhu, “A Raman spectroscopic investigation of graphite oxide derived graphene,” AIP Adv., vol. 2, pp. 032183-032183-13, 2012.
    [4] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, pp. 187401-187404, 2006.
    [5] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, pp. 47-57, 2007.
    [6] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
    [7] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, and J. Lin, “Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property,” J. Mater. Chem., vol. 21, pp. 8038-8044, 2011.
    [8] D. H. Lee, W. J. Lee, W. J. Lee, S. O. Kim, and Y. H. Kim, “Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube,” Phys. Rev. Lett., vol. 106, pp. 175502-1-175502-4, 2011.
    [9] S.-G. Wang, Q. Zhang, D.-J. Yang, P. J. Sellin, G.-F. Zhong, “Multi-walled carbon nanotube-based gas sensors for NH3 detection,” Diam. Relat. Mater., vol. 13, pp. 1327-1332, 2004.
    [10] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science, vol. 324, pp. 768-771, 2009.

    Ch. 4. Reference
    [1] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, pp. 751-758, 2010.
    [2] Y.-L. Chiou, J. P. Gambino, and M. Mohammad, “Determination of the Fowler-Nordheim tunneling parameters from the Fowler-Nordheim plot,” Solid State Electron., vol. 45, pp. 1787-1791, 2001.
    [3] R. Gao, Z. Pan, and Z.-L. Wang, “Work function at the tips of multiwalled carbon nanotubes,” Appl. Phys. Lett., vol. 78, pp. 1757-1759, 2001.
    [4] P. G. Collins and A. Zettl, “Unique characteristics of cold cathode carbon-nanotube-matrix field emitters,” Phys. Rev. B, vol. 55, pp. 9391-9399, 1997.
    [5] V. Semet, V. T. Binh, P. Vincent, D. Guillot, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, P. Legagneux, and D. Pribat, “Field electron emission from individual carbon nanotubes of a vertically aligned array,” Appl. Phys. Lett., vol. 81, pp. 343-345, 2002.
    [6] J. T. L. Thong, C.-H. Oon, W.-K. Eng, W.-D. Zhang, and L.-M. Gan, “High-current field emission from a vertically aligned carbon nanotube field emitter array,” Appl. Phys. Lett., vol. 79, pp. 2811-2813, 2001.
    [7] G. Arabale, D. Wagh, M. Kulkarni, I. S. Mulla, S. P. Vernekar, K. Vijayamohanan, and A. M. Rao, “Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide,” Chem. Phys. Lett., vol. 376, pp. 207-213, 2003.

    Ch. 5. Reference
    [1] R. John, A. Ashokreddy, C. Vijayan, and T. Pradeep, “Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition,” Nanotechnology, vol. 22, pp. 165701, 2011.
    [2] W.-C. Shih, J.-M. Jeng, J.-T. Lo, H.-C. Chen, and I.-N. Lin, “Enhanced electron field emission characteristics of carbon nanoflakes prepared by modified RF sputtering,” Jpn. J. Appl. Phys., vol. 48, pp. 081602-0816025, 2009
    [3] L. M. Malard, D. L. Mafra, S. K. Doorn, and M. A. Pimenta, “Resonance Raman scattering in graphene: probing phonons and electrons,” Solid State Commun., vol. 149, pp. 1136-1139, 2009.
    [4] C.-P. Juan, C.-C. Tsai, K.-H. Chen, L.-C. Chen, and H.-C. Cheng, “Effects of high-density oxygen plasma posttreatment on field emission properties of carbon nanotube field-emission displays,” Jpn. J. Appl. Phys., vol. 44, pp. 8231-8236, 2005.
    [5] M. Hiramatsu, K. Shiji, H. Amano, and M. Hori, “Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection,” Appl. Phys. Lett., vol. 84, pp. 4708-4710, 2004.
    [6] C.-Z. Yuan, B. Gao, L.-G. Su, and X.-G. Zhang, “NiO loaded on hydrothermally treated mesocarbon microbeads (h-MCMB) and their supercapacitive behaviors,” Solid State Ionics, vol. 178, pp. 1859-1866, 2008.
    [7] F.-B. Zheng, Y.-K. Zhou, and H.-L. Li, “Nanocrystalline NiO as an electrode material for electrochemical capacitor,” Mater. Chem. Phys., vol. 83, pp. 260-264, 2004.
    [8] V. Srinivasan and J. W. Weidner, “An electrochemical route for making porous nickel oxide electrochemical capacitors,” J. Electrochem. Soc., vol. 144 pp. 210-213, 1997.

    無法下載圖示 全文公開日期 2019/06/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE