簡易檢索 / 詳目顯示

研究生: 王思傑
Si-Jie Wang
論文名稱: 使用電流殘差訊號與機器學習之洗滌風扇狀態監診
Condition Monitoring of Scrubber Fan using Current Residual Signal with ML Algorithms
指導教授: 藍振洋
Chen-Yang Lan
劉孟昆
Meng-Kun Liu
口試委員: 陳韋任
Wei-Jen Chen
藍振洋
Chen-Yang Lan
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: 感應馬達故障診斷故障頻率模型式診斷殘差模擬機器學習
外文關鍵詞: induction motor, fault diagnosis, fault frequency, model-based diagnosis, residual simulation, machine learning
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三相感應馬達在各種工業製造程序和設施中扮演重要角色,作為驅動器,能有效地將電能轉換為機械能。由於其堅固強大的結構,它們可以在各種常壓、高壓和危險環境中安裝和運轉。儘管如此,感應馬達仍然容易因操作條件的重負荷、工業環境的應力和老化而出現故障和失效。這些故障和失效可能導致嚴重的安全問題、昂貴的停機和維修以及能源浪費。因此,保持感應馬達正常運行狀態至關重要,以確保其安全且高效的運作。狀態監診技術在預測性維護中為關鍵之技術,是了解感應馬達運行狀態的主要方法。
    基於信號的故障診斷方法,例如馬達電流特徵分析(MCSA),具有成本低、計算要求不高的優勢。它利用簡單快速傅立葉變換(FFT)演算法,可以觀察到不同的異常特徵頻率的能量。這些故障頻率則已在ISO-20958文件中標準化。然而,由於這些故障頻率在電流頻譜中的振幅和能量相對於電流諧波來說較小,因此在電流頻譜中準確找出這些故障頻率並判斷狀態具有一定的挑戰性。
    本研究旨在解探討上述之挑戰,應用基於模型的故障診斷方法取代傳統MCSA。基於模型的診斷方法使用正弦波形重疊原理,從頻譜中消除電流諧波和其他與故障無關的頻率。該方法利用測量的電壓訊號和感應馬達的狀態空間模型生成估計的電流訊號。估計的電流訊號與原始電流訊號應具有相同來自電壓信號的頻率成分,但原始電流則在系統有異常時還具有其他頻率成分,即故障特徵頻率。故障特徵頻率是由異常引起的,而非來自電壓訊號。通過將估計的電流訊號減去原始電流訊號,這樣可以消除所有相同頻率成分,同時在頻譜中保留故障特徵頻率。由此減法過程的輸出,即殘差訊號,並且殘差訊號相對於原始電流訊號對異常更敏感。因此殘差訊號是訓練異常診斷機器學習分類器的有效數據。從殘差頻譜中提取故障頻率作為機器學習分類器訓練的特徵。故障頻率具有與異常相關的物理意義,因此在訓練過程中可以為分類器提供有價值的信息。
    本研究在一個工業設施中的洗滌機風扇進行了測試驗證。該設備由感應馬達透過皮帶驅動風扇。實驗驗證結果顯示,基於模型殘差的診斷方法在實際應用中展示出比MCSA更好的敏感性和穩健性。基於模型式的診斷方法與機器學習分類器結合使用,可以有效提高故障診斷決策的準確性與性能。


    The three-phase induction motor play a crucial role as prime mover in various industrial manufacturing processes and facilities. It converts electrical energy into mechanical energy efficiently. Due to its robust and sturdy structure, it can be installed and operated in a wide range of environments, from general to high-voltage and hazardous ones. However, despite these advantages, induction motors are susceptible to failures and malfunctions caused by heavy operating, environmental stresses and aging. These failures and malfunctions can lead to serious safety issues, costly downtime and maintenance, as well as energy waste. Therefore, ensuring the normal operation of induction motor is paramount for safe and efficient operation. Fault diagnosis techniques play the key role in monitoring the condition of these motors in predictive maintenance.
    Signal-based fault diagnosis methods, such as Motor Current Signature Analysis (MCSA), offer cost-effective and low-demand advantages. By utilizing a simple Fast Fourier Transform (FFT) algorithm on the current signal, different fault frequency indicators can be observed, which have been standardized in the ISO-20958 document. However, accurately identifying the positions and severity of these fault frequencies in the current spectrum poses a challenge due to their smaller amplitudes and energies compared to other current harmonics.
    This study aims to address these challenges by applying a model-based fault residual signal to replace MCSA. The model-based approach utilizes the principle of sinusoidal waveform overlapping to eliminate current harmonics and other frequency components unrelated to faults in the spectrum. The method employs the measured voltage signal and the state-space model of the induction motor to generate an estimated current signal. The estimated current signal shares the same frequency components from the voltage signal as the original current, but the latter contains additional frequency components if with faults, namely the fault frequencies. By subtracting the estimated current signal from the original current, a destructive sinusoidal waveform overlap occurs, eliminating all identical frequency components while preserving the fault frequency spikes in the spectrum. The output of this subtraction process, known as the residual signal, is observed to be more sensitive to faults compared to the original current signal. The residual signal is valuable data in training machine learning classifiers for fault diagnosis. Extracting fault frequencies from the residual spectrum generates features for training the machine learning classifiers. Fault frequencies carry physical significance related to specific faults, thereby providing valuable information for the classifier's learning during the training process.
    The method was applied on a scrubber fan in an industrial facility, where the fan is driven by an induction motor through a belt. The experimental result has demonstrated that the model-based residual signal exhibits higher sensitivity and robustness compared to MCSA. The combination of the model-based residual signal and machine learning classifiers enhances the accuracy of fault diagnosis decision-making.

    摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 馬達故障診斷 1.2.2 訊號處理 1.2.3 模型式分析 1.2.4 機器學習 1.2.5 特徵抓取 1.3 模型式故障診斷優點 1.4 論文架構概述 第二章 研究方法 2.1 感應馬達模型 2.1.1 系統鑑別 2.1.2 座標軸轉換 2.1.3 數學模型 2.1.4 黑盒狀態空間模型 2.2 子空間識別演算法 2.2.1 狀態空間模型 2.2.2 數據集 2.2.3 狀態和擴展可觀察性矩陣 2.2.4 系統矩陣估計 2.2.5 隨機量估計 2.2.6 初始狀態估計 2.2.7 持續刺激輸入訊號 2.2.8 標準誤差估計 2.3 快速傅立葉轉換 2.4 馬達異常電流頻譜特徵 2.4.1 皮帶 2.4.2 軸承 2.5 殘差 2.5.1 殘差 2.5.2 殘差頻譜 2.6 機器學習 2.6.1 支持向量機(Support Vector Machine) 2.6.2 分類器 第三章 殘差模擬 3.1 模擬流程 3.2 暫態穩態系統鑑別之殘差模擬 3.2.1 輸入訊號以及原系統 3.2.2 系統鑑別 3.2.3 異常狀態 3.3 穩態系統鑑別之殘差模擬 3.3.1 系統鑑別 3.3.2 異常狀態 3.4 模擬實際感測器量測狀況 第四章 實驗規劃 4.1 實驗設備 4.2 損壞類型 4.2.1 皮帶破壞 4.2.2 皮帶輪偏心 4.2.3 皮帶張力不足 4.2.4 軸承破壞 4.3 故障診斷分析流程 4.4 資料前處理 4.4.1 電壓電流訊號校正 4.4.2 相線電壓電流轉換 第五章 電壓電流殘差分析 5.1 電流分析(MCSA) 5.2 殘差頻譜分析 5.2.1 基線建立 5.2.2 殘差頻譜分析 5.3 機器學習 5.4 不同負載模型比較 第六章 結論 6.1 結果討論 6.2 研究貢獻 6.3 未來展望 參考文獻 附錄 A 感應馬達數學模型 附錄 B 子空間識別數值實現

    [1] D. T. Siyambalapitiya and P. G. Mclaren, "Reliability improvement and economic benefits of online monitoring systems for large induction machines," IEEE transactions on industry applications, vol. 26, no. 6, pp. 1018-1025, 1990.
    [2] 台灣電力股份有限公司, "台灣電力公司歷年發購電量 (能源別 )及售電量 (用途別 )."
    [3] S. Önüt and S. Soner, "Analysis of energy use and efficiency in Turkish manufacturing sector SMEs," Energy Conversion and Management, vol. 48, no. 2, pp. 384-394, 2007.
    [4] B. Mecrow and A. Jack, "Efficiency trends in electric machines and drives," Energy Policy, vol. 36, no. 12, pp. 4336-4341, 2008.
    [5] R. Saidur, N. Rahim, H. H. Masjuki, S. Mekhilef, H. Ping, and M. Jamaluddin, "End-use energy analysis in the Malaysian industrial sector," Energy, vol. 34, no. 2, pp. 153-158, 2009.
    [6] G. Singh, T. C. A. Kumar, and V. Naikan, "Efficiency monitoring as a strategy for cost effective maintenance of induction motors for minimizing carbon emission and energy consumption," Reliability Engineering & System Safety, vol. 184, pp. 193-201, 2019.
    [7] W. T. Thomson and M. Fenger, "Current signature analysis to detect induction motor faults," IEEE Industry Applications Magazine, vol. 7, no. 4, pp. 26-34, 2001.
    [8] C. Stander, P. Heyns, and W. Schoombie, "Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions," Mechanical systems and signal processing, vol. 16, no. 6, pp. 1005-1024, 2002.
    [9] P. Lamim Filho, R. Pederiva, and J. Brito, "Detection of stator winding faults in induction machines using flux and vibration analysis," Mechanical Systems and Signal Processing, vol. 42, no. 1-2, pp. 377-387, 2014.
    [10] J. Zarei, M. A. Tajeddini, and H. R. Karimi, "Vibration analysis for bearing fault detection and classification using an intelligent filter," Mechatronics, vol. 24, no. 2, pp. 151-157, 2014.
    [11] P. Konar and P. Chattopadhyay, "Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs)," Applied Soft Computing, vol. 11, no. 6, pp. 4203-4211, 2011.
    [12] V. Choqueuse and M. Benbouzid, "Induction machine faults detection using stator current parametric spectral estimation," Mechanical Systems and Signal Processing, vol. 52, pp. 447-464, 2015.
    [13] V. F. Pires, M. Kadivonga, J. Martins, and A. Pires, "Motor square current signature analysis for induction motor rotor diagnosis," Measurement, vol. 46, no. 2, pp. 942-948, 2013.
    [14] J. Rangel-Magdaleno, J. Ramirez-Cortes, and H. Peregrina-Barreto, "Broken bars detection on induction motor using MCSA and mathematical morphology: An experimental study," in 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2013: IEEE, pp. 825-829.
    [15] A. Glowacz, "Acoustic based fault diagnosis of three-phase induction motor," Applied Acoustics, vol. 137, pp. 82-89, 2018.
    [16] A. Choudhary, D. Goyal, and S. S. Letha, "Infrared thermography-based fault diagnosis of induction motor bearings using machine learning," IEEE Sensors Journal, vol. 21, no. 2, pp. 1727-1734, 2020.
    [17] G. Singh, T. C. A. Kumar, and V. Naikan, "Induction motor inter turn fault detection using infrared thermographic analysis," Infrared Physics & Technology, vol. 77, pp. 277-282, 2016.
    [18] P. Gangsar and R. Tiwari, "Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review," Mechanical systems and signal processing, vol. 144, p. 106908, 2020.
    [19] R. R. Schoen, B. K. Lin, T. G. Habetler, J. H. Schlag, and S. Farag, "An unsupervised, on-line system for induction motor fault detection using stator current monitoring," IEEE Transactions on Industry Applications, vol. 31, no. 6, pp. 1280-1286, 1995.
    [20] R. de Jesus Romero-Troncoso, "Multirate signal processing to improve FFT-based analysis for detecting faults in induction motors," IEEE Transactions on industrial informatics, vol. 13, no. 3, pp. 1291-1300, 2016.
    [21] S. X. Ding, Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer Science & Business Media, 2008.
    [22] S. S. Duvvuri and S. Padmaja, "Non-linear Observer Based Stator Inter-turn Short-circuit Fault Detection in 3-Φ Induction Motor," in 2021 21st International Symposium on Power Electronics (Ee), 2021: IEEE, pp. 1-6.
    [23] Y. Al-Mutayeb and M. Almobaied, "Luenberger observer-based speed sensor fault detection of BLDC Motors," in 2021 International Conference on Electric Power Engineering–Palestine (ICEPE-P), 2021: IEEE, pp. 1-7.
    [24] W. Huang, J. Du, W. Hua, K. Bi, and Q. Fan, "A hybrid model-based diagnosis approach for open-switch faults in PMSM drives," IEEE Transactions on Power Electronics, vol. 37, no. 4, pp. 3728-3732, 2021.
    [25] A. Ibrahim, F. Anayi, and M. Packianather, "New machine learning model-based fault diagnosis of induction motors using thermal images," in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022: IEEE, pp. 58-62.
    [26] B. Mahesh, "Machine learning algorithms-a review," International Journal of Science and Research (IJSR).[Internet], vol. 9, no. 1, pp. 381-386, 2020.
    [27] D. Omat, J. Otey, and A. Al-Mousa, "Stellar Objects Classification Using Supervised Machine Learning Techniques," in 2022 International Arab Conference on Information Technology (ACIT), 2022: IEEE, pp. 1-8.
    [28] S. Upadhyay, A. Dwivedi, A. Verma, and V. Tiwari, "Heart Disease Prediction Model using various Supervised Learning Algorithm," in 2023 IEEE 12th International Conference on Communication Systems and Network Technologies (CSNT), 2023: IEEE, pp. 197-201.
    [29] A. Singh, N. Thakur, and A. Sharma, "A review of supervised machine learning algorithms," in 2016 3rd international conference on computing for sustainable global development (INDIACom), 2016: Ieee, pp. 1310-1315.
    [30] L. Zhang and F. Luo, "Review on graph learning for dimensionality reduction of hyperspectral image," Geo-spatial Information Science, vol. 23, no. 1, pp. 98-106, 2020.
    [31] Y. Mallet, D. Coomans, J. Kautsky, and O. De Vel, "Classification using adaptive wavelets for feature extraction," IEEE transactions on pattern analysis and machine intelligence, vol. 19, no. 10, pp. 1058-1066, 1997.
    [32] P. C. Krause and C. Thomas, "Simulation of symmetrical induction machinery," IEEE transactions on power apparatus and systems, vol. 84, no. 11, pp. 1038-1053, 1965.
    [33] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems. Wiley Online Library, 2002.
    [34] C.-M. Ong, "Dynamic simulation of electric machinery: using MATLAB/SIMULINK," (No Title), 1998.
    [35] L. Wang and Y. Liu, "Application of simulated annealing particle swarm optimization based on correlation in parameter identification of induction motor," Mathematical Problems in Engineering, vol. 2018, 2018.
    [36] K.-Y. Chen, W.-H. Yang, and R.-F. Fung, "System identification by using RGA with a reduced-order robust observer for an induction motor," Mechatronics, vol. 54, pp. 1-15, 2018.
    [37] O. A. Arqub, M. S. Osman, A.-H. Abdel-Aty, A.-B. A. Mohamed, and S. Momani, "A numerical algorithm for the solutions of ABC singular Lane–Emden type models arising in astrophysics using reproducing kernel discretization method," Mathematics, vol. 8, no. 6, p. 923, 2020.
    [38] F. Duan, R. Živanović, S. Al-Sarawi, and D. Mba, "Induction motor parameter estimation using sparse grid optimization algorithm," IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1453-1461, 2016.
    [39] J. Vayssettes, G. Mercère, Y. Bury, and V. Pommier-Budinger, "Structured model identification algorithm based on constrained optimisation," in 2015 European Control Conference (ECC), 2015: IEEE, pp. 1285-1290.
    [40] S. J. Qin, "An overview of subspace identification," Computers & chemical engineering, vol. 30, no. 10-12, pp. 1502-1513, 2006.
    [41] O. Prot and G. Mercère, "Initialization of gradient-based optimization algorithms for the identification of structured state-space models," IFAC Proceedings Volumes, vol. 44, no. 1, pp. 10782-10787, 2011.
    [42] P. Van Overschee and B. De Moor, "N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems," Automatica, vol. 30, no. 1, pp. 75-93, 1994.
    [43] L. A. Amézquita-Brooks, J. Licéaga-Castro, E. Licéaga-Castro, and C. E. Ugalde-Loo, "Induction motor control: multivariable analysis and effective decentralized control of stator currents for high-performance applications," IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6818-6832, 2015.
    [44] Y. Li, J. Yang, W. L. Liu, and C. L. Liao, "Multi-level model reduction and data-driven identification of the lithium-ion battery," Energies, vol. 13, no. 15, p. 3791, 2020.
    [45] M. A. Abbasi, A. Q. Khan, G. Mustafa, M. Abid, A. S. Khan, and N. Ullah, "Data-driven fault diagnostics for industrial processes: An application to Penicillin fermentation process," IEEE Access, vol. 9, pp. 65977-65987, 2021.
    [46] R. Isermann, "Model-based fault-detection and diagnosis–status and applications," Annual Reviews in control, vol. 29, no. 1, pp. 71-85, 2005.
    [47] P. Van Overschee and B. De Moor, Subspace identification for linear systems: Theory—Implementation—Applications. Springer Science & Business Media, 2012.
    [48] B. De Moor, P. Van Overschee, and W. Favoreel, "Algorithms for subspace state-space system identification: an overview," Applied and Computational Control, Signals, and Circuits: Volume 1, pp. 247-311, 1999.
    [49] L. Ljung, "System identification," in Signal analysis and prediction: Springer, 1998, pp. 163-173.
    [50] B. s. publication., "Condition monitoring and diagnostics of machine systems-Electrical signature analysis of three-phase induction motors."
    [51] T.-J. Kang, C. Yang, Y. Park, D. Hyun, S. B. Lee, and M. Teska, "Electrical monitoring of mechanical defects in induction motor-driven V-Belt–Pulley speed reduction couplings," IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2255-2264, 2018.
    [52] N. Mehala, "Condition monitoring and fault diagnosis of induction motor using motor current signature analysis," A Ph. D Thesis submitted to the Electrical Engineering Department, National Institute of Technology, Kurushetra, India, 2010.
    [53] M. E. H. Benbouzid, "A review of induction motors signature analysis as a medium for faults detection," IEEE transactions on industrial electronics, vol. 47, no. 5, pp. 984-993, 2000.
    [54] K. De Cock, B. Peeters, A. Vecchio, H. Van der Auweraer, and B. De Moor, "Subspace system identification for mechanical engineering," in Proceedings of the International Conference on Noise and Vibration Engineering (ISMA 2002), Leuven, Belgium, 2002, vol. 11.

    無法下載圖示 全文公開日期 2028/08/25 (校內網路)
    全文公開日期 2028/08/25 (校外網路)
    全文公開日期 2028/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE