簡易檢索 / 詳目顯示

研究生: 許勝誌
Sheng-Chih Hsu
論文名稱: 混合反覆控制於氣壓致動系統之精密運動控制研究
Precision Motion Control of a Pneumatic Actuating System Using Hybrid Repetitive Control
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃緒哲
Shiuh-Jer Huang
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 氣壓致動系統混合控制反覆控制智慧型控制強健控制運動控制
外文關鍵詞: Pneumatic actuating systems, hybrid control, repetitive control, intelligent control, robust control, motion control
相關次數: 點閱:221下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

以氣體做為動力的系統在作動過程中,受氣壓、熱流、不確定時變參數變化的影響,導致系統狀態參數難以準確獲得;以傳統的PID控制方法要達到所需控制效能及精度相當困難,故採用進階控制方法來提升效能的需求也日益增加,像是屬於智慧型控制方法之一的模糊控制。模糊控制方法因具有不需數學模型的優點,常被應用於氣動系統的定位控制。雖然模糊控制可適用於非線性系統,卻難以確保系統的強健性,而強健控制方法則在系統具有不確定參數時仍可確保一定程度的控制效能。有鑑於此,有學者提出結合智慧型控制與強健控制來提升控制效能和結合各自優點,例如適應性模糊強健控制。雖然此法的結果證實混合控制的可行性,但如何改善系統動態的週期性誤差仍有待探討。本研究提出一混合反覆/智慧型控制架構來進行氣壓致動系統的運動控制;除了保留智慧型控制於非線性氣壓系統的既有效果,亦藉由反覆控制改善系統的週期性動態控制效能,並以此控制架構達到改善系統整體效能。但若採用智慧型控制方法會使得混合反覆控制架構難以驗證其強健穩定度,為此本文提出結合強健μ控制與反覆控制之混合控制架構來確保系統的強健性。在研究過程中以一具有300 kg重負載和複雜耦合關係的四軸氣壓致動平台做為實驗系統,並給予週期性訊號進行反覆上下運動的追跡控制,且驗證所提之混合反覆/智慧型控制方法可改善系統整體效能。藉由連續切換至不同操作區間持續進行動態追跡實驗,結果證實了所提混合反覆/強健控制方法的優異效能與強健性。本文並提出以權重分配法求得混合反覆/強健控制的輸出最佳權重。最後,本研究將混合反覆/智慧型控制與混合反覆/強健控制應用於氣壓致動平台的單軸追跡、強健性測試及多軸同步控制驗證所提控制方法的實用性。


Due to the influences of uncertain time varying parameters caused by air pressure and thermal flow in pneumatic dynamic systems, it is sometimes difficult to obtain detailed model for control design and attain satisfactory performance if using traditional methods such as PID control. As a result, non-model based advanced control such as fuzzy control and intelligent control related methods have been widely applied to pneumatic position control in recent years. Although applicable to nonlinear pneumatic systems, the main issue of the fuzzy design is its difficulty in analyzing stability and robustness. Therefore, applying robust control which considers known system uncertainties during the design process is another popular alternative for pneumatic servo designers. Moreover, some researchers have also combined the advantages of fuzzy control and robust control as Adaptive Fuzzy Sliding Mode Control to improve the pneumatic control performance and justified the feasibility of such hybrid control idea. However, discussion on how to reduce periodic errors occurred in the repetitive motion process for better pneumatic position control is still very limited. This thesis first proposes a hybrid repetitive/intelligent control architecture for precision motion control of pneumatic actuating systems, in which intelligent control is used to handle the nonlinearities and the repetitive control is used to improve periodic tracking performance. To perform robust analysis and assure robust stability in this hybrid control architecture, this study also replaces the intelligent controller with a robust μ controller designed through a D-K iteration process. Periodic up-and-down motion experimental results on a 300 kg heavy duty pneumatic actuating table demonstrate the effectiveness of the proposed control methods. Particularly, this work applies a Weighted Average Method to find the optimal performance weighing between given two control actions while not violating the robust stability. The results show that the proposed hybrid control with fine tuning achieves good tracking performance even at perturbed operating regions.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XI 符號表 XII 第一章 緒論 1 第二章 系統描述 8 2.1 系統架設.........................................................................................8 2.2 感測器校正理論與結果................................................................12 第三章 氣壓致動系統建模 16 3.1 氣室內部參數與伺服閥數學描述................................................17 3.2 運動方程式....................................................................................23 第四章 控制理論 26 4.1 PID控制………………..................................................................26 4.2 反覆控制(Repetitive Control)………..............................................27 4.2.1 插入式反覆控制(Prototype Plug-in Repetitive Control)................27 4.3 混合控制架構……………............................................................28 4.3.1 反覆控制器設計.........................................................................30 4.3.2 前饋補償控制器.........................................................................30 4.4 模糊控制(Fuzzy Control)…............................................................31 4.5 適應性模糊滑動控制(Adaptive Fuzzy Sliding-Mode Control)........34 4.6 強健μ控制(Robust μ Control).......…..............................................38 第五章 實驗結果與討論 40 5.1 系統鑑別 ………………………....................................................40 5.1.1 時域擬合結果…..........................................................................40 5.1.2 頻域擬合結果…..........................................................................42 5.2 週期性追跡控制實驗結果.............................................................46 5.2.1 個別控制探討………..................................................................47 5.2.2 混合控制……..............................................................................52 5.2.1.1 加入前饋補償控制器……………….......................................62 5.3 混合控制之強健性測試………………….....................................68 5.3.1 μ控制的最佳參數設計................................................................73 5.4 混合控制之平台同步追跡控制實驗結果………………….........77 第六章 結論與未來研究方向 85 5.1 結論...................................…………………..................................85 5.2 未來研究方向.............................................. ..................................86 參考文獻 …………..............................................................................87

[1] G. M. Bone, X. Chen, “Position control of hybrid pneumatic-electric actuators,” In Am. Control Conf., Fairmont Queen Elizabeth, Montreal, Canada, 2012, pp. 1793-1799.
[2] K. Khayati, P. Bigras, and L. A. Dessaint, “A robust feedback linearization force control of a pneumatic actuator,” In IEEE Int. Conf. on Systems, Man, and Cybernetics, vol. 7, 2004, pp. 6113-6119.
[3] Y. Kouhi, B. Labibi, A. Fatehi, and R. Adlgostar, “H∞ and QFT robust control designs for level control plant,” Annu. IEEE Conf. on INDCON, India, Kanpur, vol. 2, 2008, pp. 388-393.
[4] S. Kaitwanidvilai and M. Parnichkun, “Design of structured controller satisfying H∞ loop shaping using evolutionary optimization application to a pneumatic robot arm,” Eng. Lett., vol. 16, no. 2, 2003.
[5] S. Kaitwanidvilai, and M. Parnichkun, “Genetic-algorithm-based fixed-structure robust H∞ loop-shaping control of a pneumatic servosystem,” J. Rob. Mechatron., vol. 16, no. 4, pp. 362-373, 2004.
[6] T. Kimura, S. Hara and T. Takamori, “H∞ control with mirror feedback for a pneumatic actuator system,” Proc. of the 35th Conf. on Decision and Control, Kobe, Japan, 1996, pp. 2365-2370.
[7] H. Morioka, A. Nishiuchi, K. Kurahara, K. Tanaka and M. Oka, “Practical robust control design of pneumatic servo systems,” Proc. of the 26th, Annu. IEEE Conf. on IECON, Nagoya, vol. 3, 2000, pp. 1755-1760.
[8] H. Porumamila and A. G. Kelkar, “Robust control and μ analysis of active pneumatic suspension,” In Proc. Am. Control Conf., 2005, pp. 2200-2205.
[9] C. L. Hwang and C. Y. Kuo, “A stable adaptive fuzzy sliding-mode control for affine nonlinear Systems with application to four-bar linkage systems,” IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 238-252, 2001.
[10] C. W. Chen, K. Yeh and K. F. R. Liu, “Adaptive fuzzy sliding mode control for seismically excited bridges with lead rubber bearing isolation,” Int. J. Uncertainty Fuzziness Knowledge Based Syst., vol. 17, no. 5, pp. 705-727, 2009.
[11] C. S. Chen and W. L. Chen, “Robust adaptive sliding-mode control using fuzzy modeling for an inverted-pendulum system,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 297-306, 1998.
[12] R. J. Wai, “Adaptive fuzzy sliding-mode control for electrical servo drive,” IEEE Trans. Ind. Electron., vol. 54, pp. 586, 2007.
[13] F. J. Lin and S. L. Chiu, “Adaptive fuzzy sliding mode control for PM synchronous servo motor drives,” Proc. Inst. Elect. Eng. D: Control Theory Appl., vol. 145, no. 1, pp. 63-72, 1998.
[14] S. J. Huang and W. C. Lin, “Adaptive fuzzy controller with sliding surface for vehicle suspension control,” IEEE Trans. Fuzzy Syst., vol. 11, no. 4, pp. 550-559, 2003.
[15] C. Y. Chen, T. H. S. Li and Y. C. Yeh, “EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots,” Inf. Sci., vol. 179, pp. 180-195, 2009.
[16] M. K. Chang, “An adaptive self-organizing fuzzy sliding mode controller for a 2-DOF rehabilitation robot actuated by pneumatic muscle actuators,” Control Eng. Practice., vol. 18, pp. 13-22, 2010.
[17] W. M. Bessa, M. S. Dutra and E. Kreuzer, “Sliding mode control with adaptive fuzzy dead-zone compensation of an electro-hydraulic servosystem,” J. Intell. Rob. Syst., vol. 58, pp. 3-16, 2010.
[18] L. Chikh, P. Poignet, F. Pierrot, and M. Michelin, “A predictive robust cascade position-torque control strategy for pneumatic artificial muscles,” In Proc. Am. Control Conf., 2010, pp. 6022-6029.
[19] C. K. Chen and J. Hwang, “Iterative learning control for position tracking of a pneumatic XY table,” Control Eng. Practice., vol. 13, no. 12, pp. 1455-1461, 2005.
[20] X. Zhu, G. Tao, B. Yao, “Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy,” IEEE/ASME Trans. Mechatron., vol. 13, no. 4, pp. 441-450, 2008.
[21] C. H. Lu and Y. R. Hwang, “A model reference robust multiple-surfaces design for tracking control of radial pneumatic motion systems,” Nonlinear Dyn, 2012, vol. 67, no. 4, pp 2585-2597.
[22] Z. Hong, P. B. Tzvi, T. Lin, A. A. Goldenberg, “Two-layer sliding mode control of pneumatic position synchro system with feedback linearization based on friction compensation,” In Proc. IEEE Int. Workshop on Rob. Sens. Environ., ROSE, Ottawa, Canada, 2008, pp. 41-45.
[23] P. C. Chen and M. C. Shih, “Modeling and robust active control of a pneumatic vibration isolator,” J. Vib. Control, vol. 13, no. 11, pp. 1553-1571, 2007.
[24] S. Chillari, S. Guccione, and G. Muscato, “An experimental comparison between several pneumatic position control methods,” Proc. of the 40th IEEE Conf. on Decision and Control, Orlando, Florida USA, 2001, pp. 1168-1173.
[25] J. Wang, J. Pu and P. Moore, “A practical control strategy for servo-pneumatic actuator systems,” Control Eng. Practice., vol. 7, no. 12, pp. 1483-1488, 1999.
[26] H. K. Lee, G. S. Choi, and G. H. Choi, “A study on tracking position control of pneumatic actuators,” Mechatron., vol. 12, pp. 813-831, 2002.
[27] H. Schulte and H. Hahn, “Fuzzy state feedback gain scheduling control of servo-pneumatic actuators,” Control Eng. Practice, vol. 12, no. 5, pp. 639-650, 2004.
[28] T. Hesselroth, K. Sarkar, P. Patrick van der Smagt, and K. Schulten, “Neural network control of a pneumatic robot arm,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 24, no. 1, pp. 28-38, 1994.
[29] 張智勇,“氣壓平台之類神經網路控制”,國立台灣科技大學機械工程系所碩士論文,2003。
[30] 謝文軒,“主動式隔振平台之控制器設計”,國立台灣科技大學機械工程系所碩士論文,2005。
[31] M. Parnichkun and C. Ngaecharoenkul, “Hybrid of fuzzy and PID in kinematics control of a pneumatic system,” proc. of the 26th, Annu. IEEE Conf. on IES, Nagoya, vol. 2, 2000, pp. 1485-1490.
[32] M. Iskarous and K. Kawamura, “Intelligent control using a neuro-fuzzy network,” Proc. of the IEEE/RSJ Int. Conf. on IROS, Pittsburgh, PA, 1995, pp. 350-355.
[33] W. Sanngoen and W. Po-nagoen, “Neuro-Fuzzy precompensator in servo pneumatic system,” Proc. of the 2nd IEEE Int. Conf. on ICAAC, Shenyang, vol. 1, 2010, pp. 78-82.
[34] S. R. Pandian, Y. Hayakawa, Y. Kanazawa, Y. Kamoyama and S. Kawamura, “Practical design of a sliding mode controller for pneumatic actuators,” J. Dyn. Syst. Meas. Contr., vol. 119, no. 4, pp. 666-674, 1997.
[35] M. Smaoui, X. Brun and D. Thomasset, “A study on tracking position control of an electropneumatic system using backstepping design,” Control Eng. Practice, vol. 14, no. 8, pp. 923-933, 2006.
[36] G. M. Bone and S. Ning, “Experimental comparison of position tracking Control algorithms for pneumatic cylinder actuators,” IEEE/ASME Trans. Mechatron., vol. 12, pp. 557-561, 2007.
[37] Z. Rao and G. M. Bone, “Nonlinear modeling and control of servo pneumatic actuators,” IEEE Trans. Control Syst. Technol., vol. 16, no. 3, pp. 562-569, 2008.
[38] K. Khayati, P. Bigras, and L. A. Dessaint, “Lugre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization,” Mechatron., vol. 19, no. 4, pp. 535-547, 2009.
[39] P. Righettiniand and H. Giberti, “A nonlinear controller for trajectory tracking of pneumatic cylinders,” Proc. of the 7th Int. Workshop on Adv. Motion Control, Maribor, Slovenia, 2002, pp. 396-401.
[40] L. W. Lee, and I. H. Li,“Wavelet-based adaptive sliding-mode control with H∞ tracking performance for pneumatic servo system position tracking control,” IET Control Theory Appl., vol. 6, no.11, pp. 1699-1714, 2012.
[41] L. Yanlei, C. Lunjun, Y. Haidong, Z. Zhenglong, C. Junwei, “Research on the fuzzy sliding-mode control for the electro-pneumatic proportional system,” Proc. of the 6th IEEE Int. Conf. on FSKD, Tianjin, vol. 4, 2009, pp. 156-159.
[42] H. M. Chen, Y. P. Shyu, C. S. Shen and H. J. Yang , “The picked and placed control of the objects for a pneumatic X-Y servo platform by integrating image processing techniques and a fuzzy sliding mode controller design,” In Proc. IEEE Int. conf. on FUZZ, Taipei, Taiwan, 2011, pp. 1127-1133.
[43] M. C. Shih and C. S. Lu, “Pneumatic servomotor drives a ball-screw with fuzzy-sliding mode position control,” In Proc. IEEE Int. conf. on SMC, Le Touquet, vol. 3,1993, pp. 50-54.
[44] S. J. Huang and H. W. Shieh, “Motion control of a nonlinear pneumatic actuating table by using self-adaptation fuzzy controller,” In Ind. Technol. IEEE Int. Conf. on ICIT, Gippsland, VIC, 2009, pp. 1-6.
[45] J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces, with application to robot manipulators,” Int. J. Contr., vol. 38, no. 2, pp. 465-492, 1983.
[46] J. J. E. Slotin, “Sliding controller design for nonlinear systems,” Int. J. Contr., vol. 40, no. 2, pp. 421-434, 1984.
[47] S. J. Huang and K. S. Huang, “An adaptive fuzzy sliding-mode controller for servomechanism disturbance rejection,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 845-852, 2001.
[48] L. Li, G. Song and J. Ou, “Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control,” J. Vib. Control, 2010, doi: 10.1177/1077546309103284.
[49] C. C. Kung, and T. H. Chen, “Observer-based indirect adaptive fuzzy sliding mode control with state variable filters for unknown nonlinear dynamical systems,” Fuzz. Sets and Syst., vol. 155, pp. 292-308, 2005.
[50] H. Song, Y. Yong, Y. Ming and X. Dianguo, “A hybrid adaptive fuzzy variable structure speed controller for brushless DC motor,” Proc. of the 28th Annu. IEEE Conf. on IECON, vol. 3, 2002, pp. 2126-2130.
[51] R. K. Mudi and N. R. Pal, “A robust self-tuning scheme for PI- and PD- type fuzzy controllers,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 2-16, 1999.
[52] K. Chen, P. Tung, M. Tsai, and Y. Fan, “A self-tuning fuzzy PID-type controller design for unbalance compensation in an active magnetic bearing,” Expert Syst. Appl., vol. 36, pp. 8560-8570, 2008.
[53] F. Piltan, N. Sulaiman, S. Roosta, M. H. Marhaban and R. Ramli, “Design a new sliding mode adaptive hybrid fuzzy controller,” J. Adv. Sci. Eng. Res., vol. 1, pp. 115-123, 2011.
[54] R. J. Wai, “Hybrid fuzzy neural-network control for nonlinear motor-toggle servomechanism,” IEEE Trans. Contr. Syst. Technol., vol. 10, no. 4, pp. 519-532, 2002.
[55] H. Chaoui , W. Gueaieb, M. Yagoub and P. Sicard, “Hybrid neural fuzzy sliding mode control of flexible-joint manipulators with unknown dynamics,” Proc. of the 32nd Annu. IEEE Conf. on IECON, 2006, pp. 4082-4087.
[56] C. M. Lin and C. F. Hsu, “Neural network hybrid control for antilock braking systems,” IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 351-359, 2003.
[57] C. M. Lin and C. F. Hsu, “Adaptive fuzzy sliding mode control for induction servomotor systems,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 362-368, 2004.
[58] C. Lin and Y. Mon, “Hybrid adaptive fuzzy controllers with application to robotic systems,” Fuzz. Sets and Syst., vol. 139, pp. 151-165, 2003.
[59] T. C. Lin, M. C. Chen, “Hybrid adaptive interval type-2 fuzzy sliding mode controller for chaos synchronization of uncertain chaotic systems,” Int. Symp. on Comput. Commun. Control and Autom., vol. 2, pp. 598-601, 2010.
[60] B. Ulutas, E. Erdemir and K. Kawamura, “Application of a hybrid controller with non-contact impedance to a humanoid robot,” IEEE Int. Workshop on VSS, Antalya, 2008, pp. 378-383.
[61] S. C. Hsu and C. Y. Lin, “Periodic motion control of a heavy duty pneumatic actuating table using low-cost position sensors and hybrid repetitive control,” Proc. of the 22nd IEEE Conf. on ISIE, Taipei, Taiwan, forthcoming, 2013.
[62] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,” Automatica, vol. 12, pp. 457-465, 1976.
[63] M. Tomizuka, T. C. Tsao, and K. K. Chew, “Analysis and synthesis of discrete-time repetitive controllers,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 110, pp. 271-280, 1988.
[64] C. Y. Lin and C. M. Chang, “Hybrid proportional derivative/repetitive control for active vibration control of smart piezoelectric structures,” J. Vib. Control, vol. 19, no. 7, pp. 992-1003, 2013.
[65] C. Y. Lin and X. Y. Lin, “High performance motion controller design for linear piezoelectric ceramic motors,” Proc. of the 8th IEEE Conf. on WCICA, Taipei, Taiwan, 2011, pp. 599-604.
[66] M. Tomizuka, “Zero-phase error tracking algorithm for digital control,” ASME J. Dyn. Syst. Meas. Control, vol. 109, pp. 65-68, 1987.
[67] J. Li and T. C. Tsao, “Robust performance repetitive control systems,” Trans. ASME, J. Dyn. Syst. Meas. Control, vol. 123, no. 3, pp. 330-337, 2001.
[68] R. Liu, L. Feng, L. Chen and S. Ma, “A new weighted average method and it’s applications in finite element method,” Proc. of the 2th IEEE Conf. on ICICTA, Changsha, Hunan, 2009, pp. 297-301.
[69] 謝欣偉,“氣壓平台之運動控制”,國立台灣科技大學機械工程系所碩士論文,2000。
[70] E. O. Doebelin, Measurement System: application and design, 2003: Int. Ed. McGraw-Hill.
[71] C. Y. Cheng and J. C. Renn, “Modeling and experiment of an active pneumatic vibration isolator according to ISO 6358,” J. Chin. Soc. Mech. Eng., vol. 33, no. 1, pp. 51-57, 2012.
[72] P. C. Chen and M. C. Shih, “Robust control of a novel active pneumatic vibration isolator through floor vibration observer,” J. Vib. Control, vol. 17, no. 9, pp. 1325-1336, 2011.
[73] A. Alleyne and M. Pomykalski, “Control of a class of nonlinear systems subject to periodic exogenous signals,” IEEE Trans. Contr. Syst. Technol., vol. 8, pp. 279-287, 2000.
[74] L. Xu and B. Yao, “Adaptive robust repetitive control of a class of nonlinear systems in normal form with applications to motion control of linear motors,” Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatron., pp. 527, 2001.
[75] C. Y. Lin and T. C. Tsao, “Adaptive control with internal model for high performance precision motion control,” Proc. of ASME IMECE, Seattle, WA, USA, 2007.
[76] T. C. Tsao, “Optimal feed-forward digital tracking controller design,” J. Dyn. Syst. Meas. Control. vol. 116, pp. 583-592, 1994.
[77] L. A. Zadeh, “Fuzzy set,” Inf. and control, vol. 8, pp. 338-353, 1965.
[78] K. Passino and S. Yurkovich, Fuzzy Control, 1998: Addison-Wesley.
[79] G. C. Hwang and S. C. Lin, “A stability approach to fuzzy control design for nonlinear system,” Fuzzy Sets Syst., vol. 48, pp. 269-278, 1992.
[80] R. Palm, “Robust control by fuzzy sliding mode,” Automat., vol. 30, no. 9, pp. 1429-1437, 1994.
[81] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust adaptation without persistent excitation,” IEEE Trans. Automat. Control, vol. AC-32, pp. 134-145, 1987.
[82] K. Zhou and J. C. Doyle, Essentials of robust control, 1997: Prentice Hall.
[83] S. J. Huang and J. S. Lee, “A stable self-organizing fuzzy controller for robotic motion control,” IEEE Trans. Ind. Electron., vol. 47, no. 2, pp. 421-428, 2000.
[84] D. Yuan and Z. Zhang, “Modelling and control scheme of the ball-plate trajectory-tracking pneumatic system with a touch screen and a rotary cylinder,” IET Control Theory Appl., 2010, vol. 4, no. 4, pp. 573-589.
[85] A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear systems containing time-varying uncertainties with unknown bounds,” Int. J. of Control, vol. 74, no. 3, pp. 252-264, 2001.
[86] P. C. Chen and A. C. Huang, “Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics, Veh. Syst. Dyn., vol. 44, no. 5, pp. 357-368, 2006.
[87] H. Shirani and S. Wakui, “Feedforward control of the three main disturbances to the pneumatic isolation table,” Proc. of 8th Conf. on ASCC, Kaohsiung, Taiwan, 2011, pp. 623-628.
[88] J. Lin, K. Kawashima, T. Fujita and T. Kagawa1, “Trajectory control of pneumatic servo table with air bearing,” Proc. of Ann. Conf. on SICE, Tokyo, Japan, 2011, pp. 1473-1478.
[89] C. Y. Lin and P. Y. Chen, “Precision tracking control of a biaxial piezo stage using repetitive control and double-feedforward compensation,” Mechatron., vol. 21, no. 7, pp. 1239-1251, 2011.

QR CODE