簡易檢索 / 詳目顯示

研究生: 陳冠達
Guan-Da Chen
論文名稱: 無鉛銲料與銅鋅合金之界面反應
Interfacial Reactions of Lead-free Solders with the Cu-xZn Alloys
指導教授: 顏怡文
Yee-wen Yen
口試委員: 施劭儒
Shao-ju Shih
吳子嘉
Albert T. Wu
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 127
中文關鍵詞: 無鉛銲料界面反應銅鋅合金
外文關鍵詞: lead-free solders, interfacial reaction, Cu-Zn alloy
相關次數: 點閱:445下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Cu是目前電子工業中常使用的金屬基材材料,另外於金屬Cu添加Zn元素形成Cu-Zn合金,因具有較佳的延展性及加工性質,亦是被常使用的基材材料。目前發展的無鉛銲料均以Sn為基底元素,並添加Cu、Ag、Zn等微量元素形成之合金。故本研究探討純Cu與添加不同含量之Zn形成Cu-xZn合金 (x=0, 5, 15, 30, 40 wt.%),並與Sn、Sn-3.0Ag-0.5Cu與Sn-9Zn無鉛銲料以液體/固體反應偶形式於反應溫度240、270及300oC下反應時間0.5至100小時之界面反應。
研究結果顯示Sn/Cu-xZn反應偶中,當基材中Zn含量至30 wt.%為止,界面處靠近基材端存在(Cu,Sn)Zn相外,界面處主要為(Cu,Zn)6Sn5與(Cu,Zn)3Sn相為主的Cu-Sn IMC;當基材中Zn含量提升至40 wt.%,溫度至270及300oC時,界面處主要的IMC為層狀的(Cu,Sn)Zn相,並發現Sn-Zn-Cu三元介穩相T相存在於反應溫度300oC的界面處。因此界面反應所生成的IMC,對基材中Zn含量甚為敏感。
Sn-3.0Ag-0.5Cu/Cu-xZn反應偶中,當基材中Zn含量至30 wt.%為止,其結果與Sn反應系統結果相似,當基材中Zn含量提升至40 wt.%時,因SAC銲料中Cu的影響,界面處的IMC由(Cu,Zn)6Sn5轉變為(Cu,Sn)Zn相。
Sn-9Zn/Cu-xZn反應偶中,界面處的IMC為(Cu,Sn)Zn5與(Cu,Sn)5Zn8相,隨著反應溫度與時間的增加,(Cu,Sn)Zn5相消失於界面處,界面處僅剩層狀且厚度非常厚的(Cu,Sn)5Zn8相;研究結果顯示層狀的(Cu,Sn)5Zn8相厚度並沒有因為基材中Zn含量的不同而有明顯差異,因此說明系統中Zn原子的主要來源為擴散速率較快的Sn-9Zn銲料所提供。


Element Cu has been widely used for interconnection materials in electronic. The Zn which was added into Cu can improve the mechanical properties. The addition of minor elements, e.q., Cu, Ag, Zn, to Sn-based solder is very common for electronic package. This study investigates the liquid/solid interfacial reactions between Sn, Sn-3.0Ag-0.5Cu and Sn-9Zn solders and Cu-xZn alloys. The reaction temperature is at 240, 270 and 300oC, while the reaction time is varied between 0.5 to 100 hours. The surface morphology and IMC formation are examined as well.
The results show that the dominant IMC of Sn/Cu-xZn (x=5, 15, 30 wt.%) couples were (Cu,Zn)6Sn5 and (Cu,Zn)3Sn phases; however, the (Cu,Sn)Zn phase was also adjacent to the Cu-xZn alloys. In the Sn/Cu-40Zn couple, the dominant IMC was a layer-shape (Cu,Sn)Zn phase when the temperature was higher than 270oC. In addition, the metastable phase T phase was found between the solder and (Cu,Sn)Zn phase at the Sn/Cu-40Zn couple when temperature was at 300oC
In the Sn-3.0Ag-0.5Cu/Cu-xZn (x=5, 15, 30 wt.%) couples, the results were similar to Sn/Cu-xZn (x=5, 15, 30 wt.%) couples. The IMC changed from (Cu,Zn)6Sn5 to (Cu,Sn)Zn phase at the SAC/Cu-40Zn couple because the Cu was consumed completely in the SAC solder.
In the Sn-9Zn/Cu-xZn (x=0, 5, 15, 30, 40 wt.%) couples, (Cu,Sn)Zn5 and (Cu,Sn)5Zn8 phase were formed at the interface; however, the (Cu,Sn)Zn5 phase disappeared at the interface with increasing time and temperature. The (Cu,Sn)5Zn8 phase thickness was increased with increasing time and temperature. The (Cu,Sn)5Zn8 phase thickness doesn’t have a great difference for the Sn-9Zn/Cu-xZn (x=0, 5, 15, 30, 40 wt.%) couples.

摘要…………………………………………………………………………I Abstract…………………………………………………………………..II 誌謝……………………………………………………………………… III 目錄…………………………………………………………………………V 圖目錄……………………………………………………………………VIII 表目錄……………………………………………………………………XIV 第一章、 前言………………………………………………………………1 第二章、 文獻回顧…………………………………………………………3 2-1電子構裝……………………………………………………………….3 2-1.1電子構裝簡介……………………………………………………….3 2-1.2 覆晶接合……………………………………………………………5 2-2界面反應與擴散理論………………………………………………….8 2-2.1界面反應理論……………………………………………………….8 2-2.2 擴散控制反應與界面控制反應……………………………………8 2-3無鉛銲料……………………………………………………………..10 2-3.1純錫(Sn)銲料………………………………………………………10 2-3.2錫-銀-銅(Sn-Ag-Cu)銲料…………………………………………11 2-3.3錫-鋅(Sn-Zn)銲料…………………………………………………12 2-4界面反應相關文獻……………………………………………………13 2-4.1 Sn/Cu-xZn界面反應……………………………………………..13 2-4.2 Sn-Ag-Cu/Cu-xZn界面反應………………………………………15 2-4.3 Sn-9Zn/Cu-xZn界面反應…………………………………………18 2-4.5其它相關文獻………………………………………………………21 第三章、 實驗方法……………………………………………………….24 3-1 Cu-xZn合金製備…………………………………………………….24 3-2無鉛銲料準備………………………………………………………..24 3-3 Solders/Cu-xZn反應偶製備……………………………………….25 3-4金相處理……………………………………………………………..26 3-5界面觀察與分析………………………………………………………27 第四章、 結果與討論…………………………………………………….29 4-1 Sn/Cu-xZn之界面反應………………………………………………29 4-1.1 Sn/Cu反應偶……………………………………………………..30 4-1.2 Sn/Cu-5Zn反應偶…………………………………………………32 4-1.3 Sn/Cu-15Zn反應偶……………………………………………….39 4-1.4 Sn/Cu-30Zn反應偶……………………………………………….45 4-1.5 Sn/Cu-40Zn反應偶……………………………………………….51 4-1.6基材中不同Zn含量對界面反應的影響…………………………..59 4-1 Sn-3.0Ag-0.5Cu/Cu-xZn之界面反應………………………………68 4-2.1Sn-3.0Ag-0.5/Cu反應偶………………………………………….68 4-2.2 Sn-3.0Ag-0.5/Cu-5Zn反應偶……………………………………70 4-2.3 Sn-3.0Ag-0.5/Cu-15Zn反應偶………………………………….75 4-2.4 Sn-3.0Ag-0.5/Cu-30Zn反應偶………………………………….80 4-2.5 Sn-3.0Ag-0.5/Cu-40Zn反應偶………………………………….85 4-2.6基材中不同Zn含量對界面反應的影響…………………………..92 4-3 Sn-9Zn/Cu-xZn之界面反應……………………………………….101 4-3.1 Sn-9Zn/Cu反應偶……………………………………………….101 4-3.2 Sn-9Zn/Cu-5Zn反應偶………………………………………….104 4-3.3 Sn-9Zn/Cu-15Zn反應偶…………………………………………108 4-3.4 Sn-9Zn/Cu-30Zn反應偶…………………………………………111 4-3.5 Sn-9Zn/Cu-40Zn反應偶…………………………………………114 4-3.6基材中不同Zn含量對界面反應的影響………………………...117 第五章、 結論……………………………………………………………122 第六章、 參考文獻………………………………………………………124

[1] D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhan, Journal of Materials, 53(2001) 28-38.
[2] RoHs EU-Directive 2002/95/EC.
[3] WEEE EU-Directive 2002/96/EC.
[4] G. Ghosh, Acta Materialia, 48 (2000) 3719-3738.
[5] K. Zeng, R. Stierman, T. C. Chiu and D. Edwards, Journal of Applied Physics, 97 (2005) 024508-1-024508-8.
[6] Y. K. Jee, Y. H. Ko and J. Yu, Journal of Materials Research, 22 (2007) 1879-1887.
[7] A. Rahn, The Basics of Soldering, John Wiely & Sons, New York (1993).
[8] C. Y. Oh, H. Roh, Y. M. Kim, J. S. Lee, H. Y. Cho and Y. Kim, Journal of Materials Research, 24 (2009) 297-300.
[9] C. Y. Yu, K. J. Wang and J. G. Duh, Journal of Electronic Materials, 39 (2010) 230-237.
[10] M. G. Cho, S. K. Seo and H. M. Lee, Journal of Alloys and Compounds, 474 (2009) 510-516.
[11] J. E. Morris, Workshop, The Design and Processing Technology of Electronic Packaging (1997).
[12] R. R. Tummala and E. J. Rymaszewski, published by Van Nostrand Reinhold, New York (1989).
[13]http://blogs.indium.com/blog/an-interview-with-the-professor/ibm-announces-shipment-of-lead-free-c4-joints.
[14] 曾堉,金屬基材與介金屬相在無鉛銲料中溶解現象的探討,碩士論文 (2006)。
[15] S. M. Hong, J. Y. Park, J. P. Jung and C. S. Kang, Journal of Electronic Materials, 30 (2001) 937-944.
[16] R. A. Rapp, A. Ezis and G. J. Yurek, Metallurgical Transcations, 4 (1973) 1283-1292.
[17] 黃家瑋,林光隆,電子構裝無鉛銲料的現況與發展,銲接與切割,13卷2期,92年六月。
[18] I. Karakaya and W. T. Thompson, ASM Handbook vol. 3 Alloy Phase Diagrams, edited by H. Baker, ASM International, Materials Park, Ohio (1987).
[19] M. Abtew, and G. Selvaduray, Materials Science and Engineering, 27 (2000) 95-141.
[20] S. Choi, J. G. Lee, F. Guo, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, Journal of Materials, 53 (2000) 22-26.
[21] K. N. Tu and J. C. M. Li, Materials Science and Engineering A, 409 (2005) 131-139.
[22] S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Goesselin, S. I. Cho, J. Yu and W. K. Choi, Journal of the Minerals Metals and Materials Society, 56 (2004) 34.
[23] 劉雨雯,RoSH綠色指令:全球環境規範&無鉛銲接技術,龍璟文化 (2005)。
[24] H. Baker (Eds.), in: ASM Handbook- Alloy Phase Diagram, Materials Park, ASM International, Ohio, p.2.68, p.2.76, p.2.79, p.2.182, p. 2.313, p.2.318 (1992).
[25] G. J. Zhao, G. M. Sheng, L. I. Wu, X. J. Yuan, Transactions of Nonferrous Metals Society of China, 22 (2012) 1954-1960.
[26] Y. W. Yen and W. K. Liou, Journal of Materials Research, 22 (2007) 2663-2667.
[27] D. Q. Yu, H. P. Xie and L. Wang, Journal of Alloys and Compounds 385 (2004). 119-125.
[28] K. N. Tu and R. D. Thompson, Acta Metallurgica, 30 (1982) 947-952.
[29] W. M. Tang, A. Q. He, Q. Liu and D. G. Ivey, Transactions of Nonferrous Metals Society of China, 20 (2010) 90-96.
[30] R. A. Gagliano and M. E. Fine, Journal of Electronic Materials, 32 (2003) 1441-1447.
[31] Y. M. Kim, H. R. Roh, S. Kim and Y. H. Kim, Journal of Electronic Materials, 39 (2010) 2504-2512.
[32] W. Y. Chen, C. Y. Yu and J. G. Duh, Journal of Materials Science, 47 (2012) 4012-4018.
[33] W. Peng, E. Monlevade, and M. E. Marques, Microelectronics Reliability, 47 (2007) 2161-2168.
[34] C. Y. Yu, and J. G. Duh, Journal of Electronic Materials, 39 (2010) 2627-2635.
[35] R. Mayappan and Z. A. Ahmad, Intermetallics, 18 (2010) 730-735.
[36] J. Hu, A. Hu, M. Li and D. Mao, Materials Characterization, 61 (2010) 355-361.
[37] J. W. Yoon and S. B. Jung, Journal of Alloys and Compounds, 407 (2006) 141-149.
[38] C. Y. Chou, S. W. Chen and Y. S. Chang, Journal of Materials Research, 21 (2006) 1849-1856.
[39] J. Mittal, S. M. Kuo, Y. W. Lin and K. L. Lin, Journal of Electronic Materials, 38 (2009) 2436-2442.
[40] C. Y. Yu, W. Y. Chen and J. G. Duh, Intermetallics, 26 (2012) 11-17.
[41] B. F. Dyson, T. R. Anthony and D. J. Turnbull, Journal of Applied Physics, 38 (1967) 3408.
[42] C. Y. Chou and S. W. Chen, Acta Materialia, 54 (2006) 2393-2400.
[43] 方揚凱,無鉛銲料與Au/Pd/Ni/Cu、Au/Pd/Ni/Brass基材之界面反應,國立臺灣科技大學化學工程系碩士學位論文 (2008)。
[44] C. Y. Yu and J. G. Duh, Journal of Materials Science, 47 (2012) 6467-6474.
[45] C. C. Chen, S. W. Chen and C. Y. Kao, Journal of Electronic Materials, 35 (2006) 922.
[46] 劉為開,微電子構裝中無鉛銲料與基材界面反應行為之探討,國立台灣科技大學工程技術研究所博士論文 (2009)。
[47] T. Laurila, V. Vuorinen and J. K. Kivilahti, Materials Science and Engineering, 49 (2005).
[48] R. Hultrgren, P. D. Desai, D. T. Hawkins, M. Gleiser and K. K. Kelley, Metals Park, (1973) 795-822.
[49] C. M. Chen and C. H. Chen, Journal of Electronic Materials, 36 (2007) 1363-1371.
[50] 林光隆,宋振銘,黃家緯,界面科學雜誌,26卷2期,2004年。
[51] S. C. Yang, C. E. Ho, C. W. Chang and C. R. Kao, International Journal of Materials Research, 21 (2006) 2436-2439.

QR CODE