簡易檢索 / 詳目顯示

研究生: 李俊融
CHUN-JUNG Li
論文名稱: 低電阻率摻銅氧化鈷p型導電薄膜之開發
Development of low resistivity p-type copper doped cobalt oxide thin films
指導教授: 趙良君
Liang-Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
何清華
Ching-Hwa Ho
李奎毅
Kuei-Yi Lee
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 氧化鈷摻銅離子束濺鍍沉積功函數薄膜
外文關鍵詞: copper doped cobalt oxide, thin films, ion beam sputter deposition, work function
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用反應式離子束濺鍍法沉積氧化鈷與摻銅氧化鈷薄膜,改變氧氣/氬氧的流量比例(Opf = O2/(Ar+O2))及沉積溫度,探討製程參數對氧化鈷及摻銅氧化鈷之影響。研究結果顯示在室溫下所沉積之樣品皆為非晶結構,當Opf由0.2增加至1.0時,氧化鈷薄膜的電阻率由5 ohmic-cm 降至0.5 ohmic-cm,而摻銅氧化鈷之電阻率卻由0.5 ohmic-cm 降至10-3 ohmic-cm。


Cobalt oxide and copper-cobalt oxide have been deposited by reactive ion beam sputter deposition. The effect of deposition temperatures and oxygen partial flow rates Opf ( = O2/(O2+Ar)) on the properties of cobalt oxide and copper-cobalt oxide thin films were characterized. Experimental results show that all samples deposited at room temperature are amorphous. As Opf increases from 0.2 to 1.0, the resistivity of cobalt oxide drops from 5 to 0.5 ohmic-cm, while the resistivity of copper-cobalt oxide drops from 0.5 to 10-3 ohmic-cm.

中文摘要 I Abstract II 致謝 III 第一章 緒論 1 1-1 前言及研究動機 1 第二章 文獻回顧 3 2-1 離子束濺鍍原理 3 2-1-1 濺鍍原理 3 2-1-2 介紹離子束濺鍍法 3 2-2 薄膜成長理論 4 2-2-1 薄膜成核與成長 4 2-3 CoO、Co3O4結構和特性簡介 7 2-3-1 CoO 7 2-3-2 Co3O4 8 2-4 鈷-銅氧化物 10 2-4-1 CuxCo3-xO4 10 2-4-2 MCu2O3 (M=Cu、Ca、Mg) 11 第三章 實驗步驟與量測方法 12 3-1 實驗設備及流程 12 3-2 特性儀器分析 16 3-2-1 場發射掃描式電子顯微鏡 (Field emission scanning electron microscope, FE-SEM) 16 3-2-2 X-ray繞射(X-ray diffraction, XRD) 17 3-2-3 能量散射光譜儀 (Energy dispersive x-ray spectroscope, EDS) 18 3-2-4 X光光電子光譜法(X-ray photoelectron spectroscopy, XPS) 19 3-2-5 四點探針量測(Four-point probe measurement) 21 3-2-6 橢圓偏光儀 (Ellipsometer) 22 3-2-7 紫外光電子能譜 (Ultraviolet Photoelectron Spectroscopy) 24 第四章 實驗結果與討論 26 4-1 X-ray 繞射儀分析 26 4-2 Raman 分析 30 4-3 EDS成份分析 33 4-4 場發射掃描式電子顯微鏡(FE-SEM)表面分析 35 4-5 橢圓偏光儀分析 37 4-6 穿透率量測 39 4-7 電阻率量測 41 4-8 XPS分析 42 4-9 UPS功函數量測 46 4-10 變溫量測電阻率 48 第五章 結論與未來展望 50 參考文獻 52

[1] A. La Rosa-Toro, R. Berenguer, C. Quijada, F. Montilla and J. L. Vazquez, “Preparation and characterization of copper-doped cobalt oxide electrodes,” J. Phys. Chem. B, Vol. 110, pp. 24021-24029, 2006.
[2] Antonio Gulino, Paolo Dapporto, Patrizia Rossi and Ignazio Fragala, “A novel self-generating liquid MOCVD precursor for Co3O4 thin films,” Chem. Mater., Vol. 15, pp. 3748-3752, 2003.
[3] Vikas Patil, Pradeep Joshi, Manik Chougule and Shashwati Sen, “Synthesis and characterization of Co3O4 thin film,” Soft Nanoscience Letters, Vol. 2, pp. 1-7, 2012.
[4] P. S. Patil, L. D. Kadam and C. D Lokhande, “Preparation and characterization of spray pyrolysed cobalt oxide thin films,” Thin Solid Films, Vol. 272, pp. 29-32, 1996.
[5] J. Feng and H. C. Zeng, “Size-controlled growth of Co3O4 nanocubes,” Chem. Mater., Vol. 15, pp. 2829-2835, 2003.
[6] Gomaa A.M. Ali, Osama A. Fouad, Salah A. Makhlouf, “Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites,” J. Alloys Compd., Vol. 579, pp. 606-611, 2013.
[7] H. J. Liu, S. H. Bo, W. J. Cui, F. Li, C. X. Wang, Y. Y. Xia, “Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries,” Electrochimica Acta, Vol. 53, p. 6497, 2008.
[8] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices” Nat. Mater., Vol. 4, pp. 366–377, 2005.
[9] Z. W. Fu, Y. Wang, Y. Zhang, Q. Z. Qin, “Electrochemical reaction of nanocrystalline Co3O4 thin film with Lithium” Solid State Ionics., Vol. 170, pp. 105-109, 2004.
[10] W. R. Grove, “On the electro-chemical polarity of gases,” Phil. Trans. Roy. Soc., Vol. 142, pp. 87-101, 1852.
[11] S. B. Krupanidhi, H. Hu, and V. Kumar, “Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films,” J. Appl. Phys., Vol. 71, No. 1, pp. 376-388, 1992.
[12] C. C. Lee, D. T. Wei, J. C. Hsu, and C. H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films, Vol. 290-291, pp. 88-93, 1996.
[13] C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci., Vol. 171, No. 1-2, pp. 151-156, 2001.
[14] 白木靖寬、吉田貞史,“薄膜工程學,” 全華科技圖書股份有限公司, 台北市, pp. 2-48, 2004.
[15] L. Davis, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, No. 1-2, pp. 1-5, 1993.
[16] M. Sumyia, S. Fuke, A. Tsukazaki, K. Tamura, A. Ohtomo, M. Kawasaki, and H. Koinuma, “Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laser deposition,” J. Appl. Phys., Vol. 93, pp. 2562-2569, 2003.
[17] C. Argile, G. E. Rhead, “Absorbed layer and thin film growth modes monitored by augur electron spectroscopy,” Surf. Sci. Rep., Vol. 10, No. 6-7, pp. 277-356, 1989.
[18] K. N. Tu, J. W. Mayer and L. C. Feldman, “Electronic thin film science, ” Macmillan Publishing Co., New York, p. 428, 1992.
[19] W. Wang and G. Zhang, “Synthesis and optical properties of high-purity CoO nanowires prepared by an environmentally friendly molten salt route,” J. Cryst. Growth, Vol. 311, pp. 4275-4280, 2009.
[20] C. Sekar, S. Paulraj, G. Krabbes, M. Kanagaraj, S. Arumugam, Ravhi S. Kumar, “Synthesis, structural and magnetic properties of spin ladder compound Ca1-xCoxCu2O3,” J. Magn. Magn. Mater. , Vol. 323, pp. 3033-3037, 2011.
[21] A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, T. O. Mason, “Transparent conducting oxides for photovoltaics: Manipulation of fermi level, work function and energy band alignment,” Materials, Vol. 3, pp. 4892-4914, 2010.
[22] Shenglin Xiong, Changzhou Yuan, Xiaogang Zhong, Baojuan Xi and Yitai Qian,” Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors,” Chem-Eur J., Vol. 15, pp. 5320-5326, 2009.
[23] S. B. Wang, C. H. Hsiao, S. J. Chang, K. T. Lam, K. H. Wen, S. C. Hung, S. J. Young, and B. R. Huang, “A CuO nanowire infrared photodetector,” Sens. Actuators, A, Vol. 171, pp. 207-211, 2011.
[24] H. Gao, J. Zhang, M. Li, K. Liu, D. Guo, and Y. Zhang, “Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface,” Curr. Appl. Phys., Vol. 13, pp. 935-939, 2013.
[25] H. Solache-Carranco, G. Juarez-Diaz, A. Esparza-Garcia, M. Briseno-Garcia, M. Galvan-Arellano, J. Martinez-Juarez, G. Romero-Paredes, and R. Pena-Sierra, “Photoluminescence and X-ray diffraction studies on Cu2O,” J. Lumin., Vol. 129, pp. 1483-1487, 2009.
[26] Oluf Bockman, Terje Ostvold, George A. Voyiatzis and George N. Papatheodorou, “Raman spectroscopy of cemented cobalt on zinc substrates,” Hydrometallurgy, Vol. 55, pp. 93-105, 2000.
[27] A. Amria, Z. T. Jianga, X. Zhaob, Z. Xieb, C. Y. Yind, N. Alia, N. Mondinosa, M. M. Rahmana, D. Habibib, “Tailoring the physicochemical and mechanical properties of optical copper–cobalt oxide thin films through annealing treatment,” Surf. Coat. Technol. , Vol. 239, pp. 212-221, 2014.

無法下載圖示 全文公開日期 2020/06/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE