簡易檢索 / 詳目顯示

研究生: 簡瑋德
Wei-De Chien
論文名稱: 二維二硫化鉬薄膜的製備及其光學特性與應用之研究
Fabrication of two-dimensional molybdenum disulfide thin film also the study on optical characteristics and applications
指導教授: 李奎毅
Kuei-Yi Lee 
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
邱博文
Chiu, Po-Wen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 二硫化鉬薄膜氧電漿光感測器光激發螢光拉曼光譜光電特性
外文關鍵詞: Oxygen plasma, Raman spectroscope
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是來探討原子層級的二硫化鉬薄膜的製備與其應用. 本論文主
    要是利用化學氣相沉積法合成原子層級的二硫化鉬薄膜於基板上, 而基板則是
    選用藍寶石與石英基板, 待合成完二硫化鉬薄膜後, 利用光學顯微鏡分析在基板
    上的形貌與其薄膜連續性, 之後利用拉曼散射, 分析薄膜原子振動模態, 再利用
    原子力顯微鏡分析薄膜的厚度, 可發現薄膜厚度為原子層級. 利用X光電子能譜
    儀分析發現薄膜元素組成, 之後利用二硫化鉬薄膜進行光激發螢光量測, 探討其
    光學特性, 同時利用低溫系統量測12 K至300 K不同溫度的光激發螢光光譜, 而
    其中在 150 K 時, 束縛能激子被量測到, 而隨著溫度的上升, 束縛能激子與自由
    激子皆產生紅移的現象, 同時也進行光穿透實驗, 發現到二硫化鉬由於電子自旋
    分裂的自由 A 激子與自由 B 激子. 最後利用二硫化鉬薄膜製作成元件, 進行場
    效電晶體模擬與光感測器研究, 在場效電晶體中, 利用閘極電場, 來控制以二硫
    化鉬作為通道的通道大小, 在電晶體的電壓-電流特性曲線量測中以狄拉克點
    (電壓-電流曲線中最低點) 為分界可觀察到電子與電洞工作區. 之後進行光感測
    II
    器研究, 探討光導率與光響應度對雷射功率的關係, 最後將二硫化鉬薄膜利用氧
    電漿進行摻雜反應, 同時進行光感測實驗, 發現經摻雜後, 可以得到較好的光電
    流值, 主要是經摻雜後, 可改變接面的位障, 以及增加貢多的表面缺陷以及陷阱
    態, 進而提升光感測效益, 由此結果可以發現利用二硫化鉬製成新元件與應用.


    The theme of this thesis is focused on the preparation and application of molybdenum disulfide (MoS2) film at the atomic layer. MoS2 thin films were deposited by chemical vapor deposition (CVD) method on the quartz and sapphire substrates. After the MoS2
    thin film was synthesized, the morphology and film continuity of the substrate were analyzed by optical microscopy. Raman scattering was used to analyze the atomic vibration mode of the MoS2 thin film. The atom force microscopy (AFM) showed the epitaxial thickness are atomic layer. Optical properties of near-band-edge emission of MoS2 thin film using photoluminescence (PL) measurements in the temperature range between 12 K and 300 K. Bound exciton has been observed at low temperature. On the other hand, transmittance experiment observed free A exciton and free B exciton which are caused by electron spin splitting. At the application of MoS2 thin film, we used MoS2 to fabricate field effect transistor (FET) channel and photodetector. Beside, we studied of the optoelectronic structure for the MoS2 thin film and we made into photoconductive detectors. Finally, the oxygen plasma treatment was used to induce oxygen atoms into the MoS2. The better optoelectronic characteristics due to the plasma treatment doped MoS2. The tunneling current increases exponentially with doping concentration. By applying our fabricating method, the MoS2 thin film provides a new application of semiconductor device.

    論文摘要 I AbstractIII 致謝IV 目錄V 圖索引VIII 表索引XII 第一章 緒論1 論文結構 1 1.1 二維半導體材料2 1.2 過渡金屬硫屬化物3 1.2.1 二硫化鉬6 1.2.2 合成與製備8 1.2.3 二維薄膜成長10 1.2.3.1 化學氣相沉積法11 1.3 光激發螢光光譜13 1.4 光電導16 1.4.1 光伏效應19 1.4.2 光電導效應21 1.5.1 氧電漿對二硫化鉬的影響24 1.6 研究背景及動機27 第二章 實驗方法與設備28 2.1 實驗流程圖28 2.2.3 二硫化鉬薄膜製備29 2.2.3.1 實驗儀器29 2.2.3.2 樣品製備31 2.2.3.3 成長方式32 2.2.3.4 反應機制34 2.2.4 光感測器製作35 2.3 分析量測儀器36 2.3.1 拉曼散射儀36 2.3.2 X光光電子能譜儀38 2.3.3 穿透式電子顯微鏡39 2.3.4 原子力顯微鏡40 2.3.5 光激發螢光光譜儀41 2.3.6 光穿透實驗44 2.4. 光電特性量測45 2.4.1 光電特性量測系統45 2.4.2 半導體特性量測系統46 2.4.3 電漿蝕刻系統47 第三章 結果與討論49 3.1 MoS2形貌分析49 3.1.1 光學顯微鏡影像圖49 3.1.2 原子力顯微鏡51 3.2 MoS2材料特性分析52 3.2.1拉曼光譜圖52 3.2.2 X光光電子能譜圖54 3.2.3 穿透式電子顯微鏡影像圖55 3.2.4 光激發螢光光譜圖57 3.2.5 光穿透光譜圖62 3.3 MoS2光電特性分析64 3.3.1 電壓-電流關係圖64 3.3.2 FET 元件模擬量測65 3.3.2 光電流量測68 3.3.3 光電導率69 3.3.4歸一化光響應度71 3.3.5 氧摻雜影響73 3.4 光電導特性分析75 3.4.1 金屬-半導體接面光電元件架構75 3.4.2 摻雜濃度對接面影響77 第四章 結論78 參考資料79

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [2] K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, and H.-L. Zhang, "A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues," Angew. Chem. Int. Ed., vol. 50, pp. 10839-10842, 2011.
    [3] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun., vol. 146, pp. 351-355, 2008.
    [4] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, "Supercapacitor devices based on graphene materials," J. Phys. Chem. C, vol. 113, pp. 13103-13107, 2009.
    [5] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties," Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [6] M. Chhowalla, Z. Liu, and H. Zhang, "Two-dimensional transition metal dichalcogenide (TMD) nanosheets," Chem. Soc. Rev., vol. 44, pp. 2584-2586, 2015.
    [7] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications," Adv. Mater., vol. 22, pp. 3906-3924, 2010.
    [8] W. Jaegermann and H. Tributsch, "Interfacial properties of semiconducting transition metal chalcogenides," Prog. Surf. Sci., vol. 29, pp. 1-167, 1988.
    [9] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., vol. 7, pp. 699-712, 2012.
    [10] Z. Wang, Q. Su, G.-Q. Yin, J. Shi, H. Deng, J. Guan, M.-P. Wu, Y.-L. Zhou, H.-L. Lou, and Y.-Q. Fu, "Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries," Mater. Chem. Phys., vol. 147, pp. 1068-1073, 2014.
    [11] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," Proc. Natl. Acad. Sci., vol. 102, pp. 10451-10453, 2005.
    [12] X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li, M. A. T. Nguyen, M. Terrones, and T. E. Mallouk, "Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted dithium intercalation and infrared laser-induced 1T to 2H phase reversion," Nano Lett., vol. 15, pp. 5956-5960, 2015.
    [13] Y. Peng, Z. Meng, C. Zhong, J. Lu, W. Yu, Y. Jia, and Y. Qian, "Hydrothermal synthesis and characterization of single-molecular-layer MoS2 and MoSe2," Chem. Lett., vol. 30, pp. 772-773, 2001.
    [14] C. J. Carmalt, I. P. Parkin, and E. S. Peters, "Atmospheric pressure chemical vapour deposition of WS2 thin films on glass," Polyhedron, vol. 22, pp. 1499-1505, 2003.
    [15] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," Adv. Mater., vol. 24, pp. 2320-2325, 2012.
    [16] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat. Nanotechnol., vol. 3, pp. 563-568, 2008.
    [17] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
    [18] K. Å. B. Andersson, S. E. Karlsson, and N. Ohmae, "3.5 Morphologies of rf sputter-deposited solid lubricants," Vacuum, vol. 27, pp. 379-382, 1977.
    [19] G. Prasad and O. N. Srivastava, "The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell," J. Phys. D: Appl. Phys., vol. 21, pp. 1028, 1988.
    [20] C. Feng, L. Huang, Z. Guo, and H. Liu, "Synthesis of tungsten disulfide (WS2) nanoflakes for lithium ion battery application," Electrochem. Commun., vol. 9, pp. 119-122, 2007.
    [21] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: A new direct-gap semiconductor," Phys. Rev. Lett., vol. 105, pp. 136805, 2010.
    [22] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, "Emerging photoluminescence in monolayer MoS2," Nano Lett., vol. 10, pp. 1271-1275, 2010.
    [23] E. S. Kadantsev and P. Hawrylak, "Electronic structure of a single MoS2 monolayer," Solid State Commun., vol. 152, pp. 909-913, 2012.
    [24] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, pp. 147-150, 2011.
    [25] C. Zhu, X. Mu, P. A. van Aken, Y. Yu, and J. Maier, "Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage," Angew. Chem. Int. Ed., vol. 126, pp. 2184-2188, 2014.
    [26] E. Gourmelon, O. Lignier, H. Hadouda, G. Couturier, J. C. Bernède, J. Tedd, J. Pouzet, and J. Salardenne, "MS2 (M = W, Mo) photosensitive thin films for solar cells," Sol. Energy Mater. Sol. Cells, vol. 46, pp. 115-121, 1997.
    [27] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012.
    [28] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nat. Chem., vol. 5, pp. 263-275, 2013.
    [29] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, and J. K. Nørskov, "Biomimetic hydrogen evolution:  MoS2 nanoparticles as catalyst for hydrogen evolution," J. Am. Chem. Soc., vol. 127, pp. 5308-5309, 2005.
    [30] D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of MoS2 and MoSe2 films with vertically aligned layers," Nano Lett., vol. 13, pp. 1341-1347, 2013.
    [31] A. Kuc, N. Zibouche, and T. Heine, "Influence of quantum confinement on the electronic structure of the transition metal sulfide," Phys. Rev. B, vol. 83, pp. 245213, 2011.
    [32] W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G. B. Cha, S. C. Hong, S. Kim, J. Kim, D. Jena, J. Joo, and S. Kim, "High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared," Adv. Mater., vol. 24, pp. 5832-5836, 2012.
    [33] B. Cho, A. R. Kim, Y. Park, J. Yoon, Y. J. Lee, S. Lee, T. J. Yoo, C. G. Kang, B. H. Lee, H. C. Ko, D. H. Kim, and M. G. Hahm, "Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2," ACS Appl. Mater. Interfaces, vol. 7, pp. 2952-2959, 2015.
    [34] S. Alkis, T. Öztaş, L. E. Aygün, F. Bozkurt, A. K. Okyay, and B. Ortaç, "Thin film MoS2 nanocrystal based ultraviolet photodetector," Opt. Express, vol. 20, pp. 21815-21820, 2012.
    [35] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, "Growth of molybdenum disulphide using iodine as transport material," Pramana, vol. 63, pp. 611-616, 2004.
    [36] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, "Chemical vapor transport reactions – A historical review," Z. Anorg. Allg. Chem, vol. 639, pp. 219-229, 2013.
    [37] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, "Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides," Cryst. Growth. Des., vol. 13, pp. 4453-4459, 2013.
    [38] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from Chemically Exfoliated MoS2," Nano Lett., vol. 11, pp. 5111-5116, 2011.
    [39] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, and H. Zhang, "Single-layer semiconducting nanosheets: High-yield preparation and device fabrication," Angew. Chem. Int. Ed., vol. 50, pp. 11093-11097, 2011.
    [40] J. D. Plummer, Silicon VLSI technology: fundamentals, practice and modeling: Pearson Education India, 2009.
    [41] T. F. Kuech, K. F. Jensen, J. Vossen, and W. Kern, "Thin film processes-II," ed: Academic Press, New York, 1991.
    [42] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, and S. Jiazhong, "Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1773-1787, 2006.
    [43] D. K. Schroder, Semiconductor material and device characterization: John Wiley & Sons, 2006.
    [44] M. Anpo, N. Aikawa, Y. Kubokawa, M. Che, C. Louis, and E. Giamello, "Photoluminescence and photocatalytic activity of highly dispersed titanium oxide anchored onto porous Vycor glass," J. Phys. Chem., vol. 89, pp. 5017-5021, 1985.
    [45] W. F. Zhang, M. S. Zhang, Z. Yin, and Q. Chen, "Photoluminescence in anatase titanium dioxide nanocrystals," Appl. Phys. B, vol. 70, pp. 261-265, 2000.
    [46] D. Neamen, Semiconductor physics and devices: McGraw-Hill, Inc., 2002.
    [47] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, "Mechanisms of photoconductivity in atomically thin MoS2," Nano Let.t, vol. 14, pp. 6165-6170, 2014.
    [48] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Photocurrent generation with two-dimensional van der Waals semiconductors," Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015.
    [49] W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, "Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition," Nat. Commun., vol. 5, pp. 3087, 2014.
    [50] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, "Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons," Sci. Rep., vol. 3, p. 2657, 2013.
    [51] Z. Li, S.-W. Chang, C.-C. Chen, and S. B. Cronin, "Enhanced photocurrent and photoluminescence spectra in MoS2 under ionic liquid gating," Nano Res., vol. 7, pp. 973-980, 2014.
    [52] C. Chen, H. Qiao, S. Lin, C. Man Luk, Y. Liu, Z. Xu, J. Song, Y. Xue, D. Li, J. Yuan, W. Yu, C. Pan, S. Ping Lau, and Q. Bao, "Highly responsive MoS2 photodetectors enhanced by graphene quantum dots," Sci. rep., vol. 5, p. 11830, 2015.
    [53] J. Shim, A. Oh, D.-H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J.-H. Park, "High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment," Adv. Mater., vol. 28, pp. 6985-6992, 2016.
    [54] N. M. D. Brown, N. Cui, and A. McKinley, "An XPS study of the surface modification of natural MoS2 following treatment in an RF-oxygen plasma," Appl. Surf. Sci., vol. 134, pp. 11-21, 1998.
    [55] B. C. Windom, W. G. Sawyer, and D. W. Hahn, "A raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems," Tribol. Lett., vol. 42, pp. 301-310, 2011.
    [56] M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, "Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma," Nanoscale, vol. 6, pp. 10033-10039, 2014.
    [57] K. Suhhyun, C.-M. Sup, Q. Deshun, R.-C. Ho, L. Xiaochi, K. Minwoo, S.-Y. Jae, and Y.-W. Jong, "Effects of plasma treatment on surface properties of ultrathin layered MoS2," 2D Mater., vol. 3, pp. 035002, 2016.
    [58] N. Kang, H. P. Paudel, M. N. Leuenberger, L. Tetard, and S. I. Khondaker, "Photoluminescence Quenching in Single-Layer MoS2 via Oxygen Plasma Treatment," J. Phys. Chem. C, vol. 118, pp. 21258-21263, 2014.
    [59] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, "Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films," Sci. Rep., vol. 3, pp. 1866, 2013.
    [60] X. L. Li and Y. D. Li, "Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S," Chem.-Eur. J., vol. 9, pp. 2726-2731, 2003.
    [61] G. D. Gilliland, "Photoluminescence spectroscopy of crystalline semiconductors," Mater. Sci. Eng., R, vol. 18, pp. 99-399, 1997.
    [62] C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu, "Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition," Adv. Opt. Mater., vol. 2, pp. 131-136, 2014.
    [63] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," ACS Nano, vol. 4, pp. 2695-2700, 2010.
    [64] Y. Wan, H. Zhang, K. Zhang, Y. Wang, B. Sheng, X. Wang, and L. Dai, "Large-scale synthesis and systematic photoluminescence properties of monolayer MoS2 on fused silica," ACS Appl. Mater. Interfaces, vol. 8, pp. 18570-18576, 2016.
    [65] C.-C. Huang, F. Al-Saab, Y. Wang, J.-Y. Ou, J. C. Walker, S. Wang, B. Gholipour, R. E. Simpson, and D. W. Hewak, "Scalable high-mobility MoS2 thin films fabricated by an atmospheric pressure chemical vapor deposition process at ambient temperature," Nanoscale, vol. 6, pp. 12792-12797, 2014.
    [66] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, "Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons," Sci. Rep., vol. 3, pp. 2657, 2013.
    [67] J. Zhang, D. Li, R. Chen, and Q. Xiong, "Laser cooling of a semiconductor by 40 kelvin," Nature, vol. 493, pp. 504-508, 2013.
    [68] A. A. Mitioglu, P. Plochocka, J. Jadczak, W. Escoffier, G. Rikken, L. Kulyuk, and D. Maude, "Optical manipulation of the exciton charge state in single-layer tungsten disulfide," Phy. Rev. B, vol. 88, pp. 245403, 2013.
    [69] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, "Lowtemperature photocarrier dynamics in monolayer MoS2," App. Phy. Lett., vol. 99, p. 102109, 2011.
    [70] J.-H. Fan, P. Gao, A.-M. Zhang, B.-R. Zhu, H.-L. Zeng, X.-D. Cui, R. He, and Q.-M. Zhang, "Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2," J. Appl. Phy., vol. 115, p. 053527, 2014.
    [71] K. P. Dhakal, D. L. Duong, J. Lee, H. Nam, M. Kim, M. Kan, Y. H. Lee, and J. Kim, "Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2," Nanoscale, vol. 6, pp. 13028-13035, 2014.
    [72] S. Vaziri, "Fabrication and Characterization of Graphene Field Effect Transistors," M.S. thesis, Dept. Integrated Devices and Circuits, KTH, Sweden, 2011.
    [73] R. J. Baker, CMOS: circuit design, layout, and simulation vol. 1: John Wiley & Sons, 2008.
    [74] R. H. Bube, Photoelectronic properties of semiconductors: Cambridge University Press, 1992.
    [75] M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, "Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors," Nano Lett., vol. 14, pp. 3347-3352, 2014.
    [76] M. Shaygan, K. Davami, N. Kheirabi, C. K. Baek, G. Cuniberti, M. Meyyappan, and J.-S. Lee, "Single-crystalline CdTe nanowire field effect transistors as nanowire-based photodetector," Phy. Chem. Chem. Phy., vol. 16, pp. 22687-22693, 2014.
    [77] L. Donghua, S. Zhiwen, Z. Lianchang, H. Congli, Z. Jing, C. Meng, Y. Rong, T. Xuezeng, B. Xuedong, S. Dongxia, and Z. Guangyu, "Reducing the contact resistance of SiNW devices by employing a heavily doped carrier injection layer," Nanotechnology, vol. 23, p. 305701, 2012.

    無法下載圖示 全文公開日期 2022/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE