簡易檢索 / 詳目顯示

研究生: 朱冠威
Chu - Kuan Wei
論文名稱: 壓電雙晶片以雙相驅動製作幫浦結構之固液耦合振動分析與流率量測
Fluid-Structure Coupled Vibration and Flow-Rate Measurement from In-Phase and Anti-Phase Driving Pumps Used on Piezoelectric Bimorphs
指導教授: 黃育熙
Yu-Hsi Huang
口試委員: 趙振綱
Ching-Kong Chao
馬劍清
Chien-Ching Ma
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 228
中文關鍵詞: 壓電幫浦壓電雙晶片固液耦合振動特性電子斑點干涉術雷射都卜勒振動儀(LDV)PVDF薄膜感測器有限元素法共振頻率振動模態流量
外文關鍵詞: piezoelectric micropump, piezoelectric bimorph, solid-liquid coupled vibration, electronic speckle pattern interferometry, laser Doppler vibrometer, polyvinylidene fluoride, Finite element method, resonance frequency, mode shape, flow rate
相關次數: 點閱:310下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討壓電材料於腔體內與腔體外之幫浦結構耦合流體振動並造成流率的量測與分析,幫浦應用於一對壓電元件使用同反相與不同模態振形作動推動流體,透過三種實驗量測及數值計算的研究方法得知壓電材料於不同流體時以同反相振動的共振頻率及振動模態。研究主要探討壓電材料耦合空氣、水與甘油三種流體相互影響的振動特性,本研究的特點在於探討兩組壓電材料的同反相固液耦合振動特性,目的是希望獲知反相振動驅動流體可增加幫浦的效能,設計兩種不同壓電幫浦進行比較,其一利用仿生效應設計內嵌式的壓電幫浦,使壓電材料的振動模仿魚尾擺動的效應推動液體產生流量,另一則是設計是利用壓電材料黏結PDMS高分子薄膜於共振頻率產生位移改變腔體體積,使液體因腔體體積的改變增加流體的流量。本研究之壓電材料與液體耦合特性使用三種量測設備進行實驗量測,包括垂直式的全域式電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI)對壓電材料於流體中的振動進行即時量測,紀錄壓電材料與不同流體耦合作用下的共振頻率與振動模態,並以改良架構量測兩片壓電材料的振動特性;雷射都卜勒振動儀(Laser Doppler Vibrometer, LDV)以單點量測壓電材料與流體耦合的面外振動位移,並可使用穩態掃頻的方式獲得壓電微幫浦於固液耦合的面外共振頻率,並於共振頻率下逐步增大電壓獲得壓電材料於不同流體中的極限位移量值;阻抗分析儀則針對壓電材料的電性進行量測,可面內耦合面外振動的共振頻率與反共振頻率,並可分別量測同反相與兩片壓電元件等四種不同使用狀態的阻抗特性。本研究使用聚偏二氟乙烯(PVDF)壓電薄膜感測器實際量測上下兩壓電雙晶片於腔體結構中運作的相位,目的為了得知振形的相位特性以增加流體推擠效果。本研究對壓電雙晶片耦合不同流體所進行的振動特性量測,所有的實驗量測結果皆與固液耦合的有限元素數值計算進行分析比較,無論在共振頻率或振動模態皆可相互對應,對於壓電材料的動態特性於實驗與數值分析皆有良好的驗證結果,成功獲得壓電元件於流體內與流體上的雙相固液耦合振動特性。


    This fluid-structure coupled vibration characteristics of piezoelectric material was investigated on pump structures when piezoelectric actuator used inside and under pump chamber. Piezoelectric elements were applied to cause in-phase and anti-phase motions pushing and pulling fluids in pumps. The resonant frequencies, mode shapes and flow rate were obtained by experimental measurements and numerical calculation in different fluids. Two designs of piezoelectric pumps were studied on fluid-structure vibration properties. One of biomimetic design embedded piezoelectric element in pump to imitate the fishtail swing pushing liquid and generating flow by vibrating piezoelectric material. In another design, piezoelectric element was bonded on PDMS polymer film operating on resonance frequency to vary the volume of chamber so that the fluids were promote to flow rate. Three experimental techniques and finite element method were used to study on the in-phase and anti-phase vibration characteristics for two piezoelectric pumps in different fluids. First, a full-field, non-conduct, real-time and self-arranged optical vertically system, which is called as electronic speckle pattern interferometry (ESPI), used to obtain on the resonant frequency and mode shape of piezoelectric material in fluids. Second, an pointwisely optical system, Laser Doppler vibrometer (LDV), measured on vibrating displacement of piezoelectric material coupled with fluids. By using LDV measurement, the resonance frequencies and maximum vibrating displacement in different fluids were determined by steady-state swept sinusoid wave. Impedance analyzer can obtained on the resonance frequency of piezoelectric materials coupled with fluids on in-phase and anti-phase vibrations. In this study, the use of polyvinylidene fluoride (PVDF) piezoelectric films as phase sensors measured on the phase characteristic of mode to ensure the promotion of fluid. Hence, the vibration coupling characteristics of piezoelectric bimorphs coupled with different fluids were determined by experimental measurements and the results were verified with Finite element numerical calculation. Whether in-phase or anti-phase vibration operates in this fluid-structure coupled system, the dynamic characteristics of the piezoelectric materials have good consistence between experimental and numerical results.

    中文摘要 I ABSTRACT III 誌謝 V 目錄 I 圖目錄 IV 表目錄 XI 符號所引 XIII 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 4 1.3內容介紹 10 第二章 壓電及聲學耦合基本理論與實驗儀器簡介 13 2.1壓電基本理論 13 2.2壓電材料常數 16 2.3聲學耦合理論 18 2.4電子斑點干涉術 20 2.4.1 面外振動量測 21 2.5雷射都卜勒振動儀(Laser Doppler Vibrometer , LDV ) 27 2.6阻抗分析儀 30 2.7聚偏二氟乙烯(PVDF)壓電薄膜感測器 36 第三章 壓電微幫浦設計及製作過程 39 3.1壓電微幫浦設計概念 39 3.1.1仿生壓電式無閥微幫浦(Pump A) 42 3.1.2結合PDMS薄膜無閥式壓電幫浦(Pump B) 43 3.2壓電微幫浦的數值分析與製作過程 45 3.2.1仿生壓電式無閥微幫浦製作(Pump A) 47 3.2.2結合PDMS薄膜無閥式壓電幫浦(Pump B) 48 3.3壓電陶瓷雙晶片介紹及理論 58 3.4固液耦合振動分析實驗方法及量測步驟 60 3.5壓電矩形雙晶片相位差異與實際測量方法 63 3.5.1壓電矩形雙晶片相位判斷的實際測量方法 63 3.6壓電元件之固液耦合振動特性數值分析 66 3.6.1仿生壓電式無閥微幫浦(Pump A) 67 3.6.2結合PDMS薄膜無閥式壓電幫浦(Pump B) 68 第四章 仿生壓電式無閥微幫浦固液耦合振動分析 79 4.1仿生壓電式無閥微幫浦分析結果 79 4.1.1仿生壓電式無閥微幫浦(Pump A)與空氣耦合之結果 79 4.1.2仿生壓電式無閥微幫浦(Pump A)與水耦合之結果 92 4.1.3仿生壓電式無閥微幫浦(Pump A)與甘油耦合之結果 104 4.2仿生壓電式無閥微幫浦(Pump A)於固液耦合的振動位移 118 4.3仿生壓電式無閥微幫浦(Pump A)流率及流速量測 123 4.3.1仿生壓電式無閥微幫浦(Pump A)流率及流速實驗方式 123 4.3.2仿生壓電式無閥微幫浦(Pump A)流率及流速量測結果 124 4.4腔體壓力場數值分析 132 第五章 結合PDMS薄膜無閥壓電幫浦固液耦合振動分析 137 5.1結合PDMS薄膜無閥式壓電幫浦分析結果 137 5.1.1結合PDMS薄膜無閥式壓電幫浦(Pump B)與空氣耦合之結果 137 5.1.2結合PDMS薄膜無閥式壓電幫浦(Pump B)與水耦合之結果 151 5.1.3結合PDMS薄膜無閥式壓電幫浦(Pump B)與甘油耦合之結果 163 5.2結合PDMS薄膜無閥式壓電幫浦(Pump B)振動位移 175 5.3結合PDMS薄膜無閥式壓電幫浦(Pump B)流率及流速量測 180 5.3.1結合PDMS薄膜無閥式壓電幫浦(Pump B)流率及流速實驗方式 180 5.3.2結合PDMS薄膜無閥式壓電幫浦(Pump B)流率及流速量測結果 182 5.4腔體壓力場數值分析 189 第六章 仿生壓電式無閥微幫浦與結合PDMS薄膜無閥式壓電幫浦綜合討論 195 6.1仿生壓電式無閥微幫浦Pump A 195 6.2結合PDMS薄膜無閥式壓電幫浦Pump B 196 6.3討論 197 第七章 結論與未來展望 221 7.1 結論 221 7.2 未來展望 223 參考文獻 225

    [1] Liua G.J., Shen C.l., Yang Z.G., Cai Xin., Zhang H.Ha., “A disposable piezoelectric micropump with high performance for closed-loopinsulin therapy system”, Sensors and Actuators, A(163), pp.291–296, 2010.
    [2] Tiersten H.F., Linear Piezoelectric Plate Vibrations. New York: Plenum, 1969.
    [3] IEEE standard on piezoelectricity. IEEE Ultrasonics Ferroelectrics and Frequency Control Society, ANSI/IEEE Std 176-1987.
    [4] Tzou H.S., Piezoelectric shells: distributed sensing and control of continua. Kluwer Academic Publishers, 1993.
    [5] Heywang W., Lubitz K. and Wersing W., Piezoelectricity-evolution and future of a technology. Springer, 2008.
    [6] Luo Y., Yin X., Wang X., Zhang Z., “Study of Polymeric MEMS Micro-pump Actuated by PZT Bimorph”, IEEE, pp225-228, April 2013.
    [7] 沈弘俊,李青峻,許家睿,吳咨亨,” 無閥門微幫浦裝置元件之介紹與其應用”,中華民國97年。
    [8] Wu J., Lu L., “LIQUID-SOLID COUPLED SYSTEM OF MICROPUMP”, Acta Mechanica Solida Sinica,19(1), March, 2006.
    [9] De Lima C.R., Vatanabe S.L., CHoi A., Nakasone P.H., Felipe Pires R., Carlos Nelli Silva E., “A biomimetic piezoelectric pump: Computational and experimental Characterization”, Sensors and Actuators, A(152), pp.110–118, 2009.
    [10] Zhou Y. and Amirouche F., “Study of fluid damping effects on resonant frequencyof an electromagnetically actuated valveless micropump”, Springer-Verlag London Limited, pp.1187-1196, 2009.
    [11] Hou W., Das B., Jiang Y., Quin S., Zheng X.I., Pi X., Yang J., Liu H.G., Zeng J. and Zeng Z.G., “Simulation of the Diaphragm Properties of APZT-based Valveless Micropump”, IEEE Nano/Micro Engineered and Molecular Systems, 2008.
    [12] Ma H.K., Hou B.R., Wu H.Y., Lim C.Y., Gao J.J., Kou M.C., “Development and application of a diaphragm micro-pump with piezoelectric device”, Springer-Verlag, 14, pp.1001-1007, 2008.
    [13] Ma H.K., Chen B.R., Gao J.J., Lim C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36, pp.225-232, 2009.
    [14] Ma H.K., Su H.C., Wu J.Y., “Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber”, Sensors and Actuators, A (171), pp.297–305, 2011.
    [15] 連誼婷,“以壓電驅動無閥門微幫浦之流固耦合分析”,國立中央大學機械工程學系碩士論文,中華民國101年6月。
    [16] Singhal V., Garimella S.V., Murthy J.Y.,” Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps”, pp 226–235, 26 April 2004.
    [17] Butters J.N. and Leendertz J.A., “Speckle pattern and holographic techniques in engineering metrology”, Optics and Laser Technology, 3(1), pp. 26-30, 1971.
    [18] Hgmoen K. and Lkberg O.J., “Detection and measurement of small vibrations using electronic speckle pattern interferometry”, Applied Optics, 16(7), pp. 1869-1875, 1977.
    [19] Wykes C., “Use of electronic speckle pattern interferometry/ESPI/ in the measurement of static and dynamic surface displacements”, Optical Engineering, 21, pp.400-406, 1982.
    [20] Nakadate S., Saito H. and Nakajima T., “Vibration measurement using phase-shifting stroboscopic holographic interferometry”, Journal of Modern Optics, 33(10), pp. 1295-1309, 1986.
    [21] Wang W.C., Hwang C.H. and Lin S.Y., “Vibration measurement by the time-averaged electronic speckle pattern interferometry methods”, Applied Optics, 35,(22), pp.4502-4509, 1996.
    [22] Ma C.C. and Huang C.H., “Experimental and numerical analysis of vibrating cracked plates at resonant frequencies”, Experimental Mechanics, 41(1), pp.8-18, 2001.
    [23] Ma C.C. and Huang C.H., “Experimental full field investigations of resonant vibrations for piezoceramic plates by an optical interferometry method”, Experimental Mechanics, 42(2), pp.140-146, 2002.
    [24] Ma C.C. and Lin Y.C., “Resonant vibration of piezoceramic plates in fluid”, Interaction and Multiscale Mechanics, 1(2), pp.177-190, 2008.
    [25] Ma C.C., Lin H.Y., Lin Y.C. and Huang Y.H., “Experimental and numerical investigations on resonant characteristics of a single-layer piezoceramic plate and a cross-ply piezolaminates composite plate”, Journal of the Acoustical Society of America, 119(3), pp.1476-1486, 2006.
    [26] Cady W.G., Piezoelectricity. McGraw-Hill Book Co. Inc., New York, 1946.
    [27] Mason W.P., Piezoelectric crystals and their application to ultrasonics. New York: Van Nostrand, 1950.
    [28] Ma C.C., Lin Y.C., Huang Y.H. and Lin H.Y., “Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(2), pp. 227-239, 2007.
    [29] Huang Y.H., Ma C.C., Chao C.K., “High-Frequency Resonant Characteristics of Triple-Layered Piezoelectric Bimorphs Determined Using Experimental Measurements and Theoretical Analysis”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(6), pp.1219-1232, 2012.
    [30] Huang Y.H. and Ma C.C., “Experimental and Numerical Investigations of Vibration Characteristics for Parallel-Type and Series Triple-Layered Piezoelectric Bimorphs”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 56,(12), pp.2598-2611, 2009.
    [31] Huang Y.H. and Hsu H.T., “Solid-liquid coupled vibration characteristics of piezeoelectric hydroacoustic devices”,Sensors and Actuators,A(238) pp.177–195, 2016..
    [32] “基本壓電材料學”,池田拓郎著、陳世春譯,復漢出版社出版,中華民國74年7月。
    [33] “壓電力學”,周卓明,全華科技圖書股份有限公司出版,中華民國92年11月。
    [34] Bent A.A., Hagood N.W.,” Piezoelectric Fiber Composites with Interdigitated Electrodes”, Smart Structures and Intelligent, SPIE 1917, 1993, pp.341-352.
    [35] F. M. White, “Fluid Mechanics, “ McGraw-Hill, New York , pp.334-336, 345-351 , 1986.
    [36] 許輝增,“壓電元件應用於不同微幫浦結構之固液耦合振動特性”中華民國102年6月
    [37] Hibbeler R.C., Mechanics of materials. 3rd edition, Prentice Hall Perss, 1997.

    QR CODE