簡易檢索 / 詳目顯示

研究生: 陳坤隆
Kun-Long Chen
論文名稱: 新型無鐵芯式霍爾比流器研製
Development of a Novel Coreless Hall Effect Current Transformer
指導教授: 陳南鳴
Nanming Chen
口試委員: 潘晴財
none
盧展南
none
陳慕平
none
楊金石
none
黃思倫
none
郭倫嘉
none
吳啟瑞
none
連國龍
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 91
中文關鍵詞: 比流器電流量測無鐵心式霍爾比流器霍爾感測器直流輸出電壓準位
外文關鍵詞: current measurement, current transformer, coreless Hall effect current transformer, Hall sensor, quiescent output voltage
相關次數: 點閱:483下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵芯為傳統比流器不可缺少的主要結構,除本身磁能轉換外,亦可隔絕外在磁場的干擾,且不受待測物體幾何形狀的影響。但鐵芯在故障發生時的飽和問題將造成電流的誤判斷,進而危及電力系統的穩定度及可靠度,且鐵芯龐大的體積,更侷限了電力保護系統的發展及應用。
    本論文提出一個新的電流量測技術,稱作新型無鐵芯式霍爾比流器。其在無使用鐵芯環繞導線的環境下,設計使用霍爾感測器採角度對稱分佈的方式直接貼附在電力纜線上,以取霍爾電壓平均值的方式消除磁場非均勻分佈的問題。模擬及實測的結果皆證明能有效的降低外在磁場的干擾及待測導線非長直導線所造成磁場不對稱的問題。在無鐵芯輔助的環境下,一樣可達到傳統比流器的準確等級,且在故障發生時,更無傳統比流器飽和的問題存在。本論文亦針對IEC standard 60044-8 電子式比流器規範進行電流準確等級試驗,結果證明新型無鐵芯式霍爾比流器在計測用可達準確等級1.0,而如為保護用則可達準確等級5P18。


    Iron cores are a necessary component of traditional current transformers (CTs) because in addition to transforming a magnetic field into electricity, iron cores can also help currents to be measured accurately by eliminating the effects of the geometric shape of the measured objects. When a fault occurs in a power system, the fault currents usually contain large direct current offsets, and therefore may cause saturation of the CT iron cores. This saturation phenomenon will cause distortion of current waveforms in the secondary windings, resulting in false responses in current measurement and protective systems. These problems, therefore, severely affect the safety and reliability of power systems. Furthermore, the bulkiness of traditional CTs, create extra restrictions on the development of smart grid.
    In this research, a new method for performing current measurement is proposed; this method involves the use of Hall sensors without iron cores, called a coreless Hall effect current transformer (HCT). Hall sensors are symmetrically attached to the conducting cable. The HCT calculates the average Hall voltages generated by Hall sensors; thus, it can eliminate the problems of asymmetrical magnetic fields. The simulation and measurement results show that the HCT can effectively eliminate the ambient interference and the effects caused by electric cables not being infinitely long straight conductors. The accuracy class of the current measurements using HCTs without iron cores is as good as that obtained using traditional CTs. Moreover, in the presence of faults, HCTs do not encounter problems related to saturation that exist in traditional CTs. According to IEC standard 60044-8, the proposed method can achieve the accuracy class 1.0 for measuring CTs, and the accuracy class 5P18 for protective CTs.

    中文摘要…………………………………………………………………...….i 英文摘要……………………………………………………………………...ii 誌謝…………………………………………………………………………..iii 目錄…………………………………………………………………………..iv 圖表索引…………………………………………………………………….vii 第一章 緒論………………………………………………………….………1 1.1 研究背景與動機……………………………………………………1 1.2 研究目的……………………………………………………………2 1.3 章節概述……………………………………………………………2 第二章 霍爾感測器介紹與無鐵芯式霍爾比流器輸出特性探討………….4 2.1 前言…………………………………………………………………4 2.2 霍爾感測器原理及特性……………………………………………4 2.2.1 霍爾效應…………………………………………………….4 2.2.2 霍爾感測器特性…………………………………………….5 2.2.3霍爾感測器基材選用………………………………………...6 2.3 無鐵芯式霍爾比流器輸出特性……………………………………9 2.3.1 霍爾感測器A1301規格……………………………………9 2.3.2 無鐵芯式霍爾比流器輸出特性…………………………...12 第三章 比流器標準規範……………………………………………….......14 3.1 前言………………………………………………………………..14 3.2 傳統比流器標準規範………………………………………..……14 3.3 電子式比流器標準規範……………………………………..……17 第四章 無鐵芯式霍爾比流器之原理及架構……………………………...21 4.1 前言………………………………………………………………..21 4.2 磁場源分析及模擬………………………………………………..21 4.2.1 單顆霍爾感測器…………………………………………...21 4.2.2 多顆霍爾感測器………………………………………...…23 4.3 無鐵芯式霍爾比流器之原理……………………………………..27 4.4 無鐵芯式霍爾比流器之架構……………………………………..29 4.5 非長直導線磁場推導……………………………………………..30 第五章 模擬結果與討論…………………………………………………...32 5.1 前言………………………………………………………………..32 5.2 外在環境干擾的自我抵消………………………………………..32 5.2.1相間距離d問題……………………………………….…….32 5.2.2 三相不平衡電流問題……………………………………...35 5.2.3 無鐵心式霍爾比流器的擺放角度θ問題…………………38 5.3 待測非長直纜線的自我補償……………………………………..39 5.3.1 纜線的非長直導線問題…………………………..……….39 5.3.2 纜線截面的非對稱問題…………………………………...41 5.3.3 無鐵芯式霍爾比流器的擺放問題 ………………………...43 5.4 無鐵芯式霍爾比流器應用於氣封絕緣開關設備內的電流量測模 擬分析…………………………………………………………….44 5.4.1 氣封絕緣開關設備簡介……………………………….......44 5.4.2 變電所之三相不平衡電流問題…………………………...45 5.4.3 故障電流問題……………………………………………...54 第六章 試驗電路及量測系統架構規劃…………………………………...57 6.1 前言………………………………………………………………..57 6.2 試驗電路架構規劃………………………………………………..57 6.2.1 三相不平衡與纜線排列試驗電路………………………...57 6.2.2 三相接地故障試驗電路…………………………………...58 6.2.3 非長直纜線試驗電路………………………………….…..60 6.3 量測系統架構規劃………………………………………………..62 第七章 測試結果與討論…………………………………………………...63 7.1 前言………………………………………………………………..63 7.2 外在環境干擾的自我抵消……………………………………..…63 7.2.1 三相不平衡電流干擾問題………………………………...63 7.2.2 三相纜線不同排列問題……………………………...……67 7.2.3 故障電流問題……………………………………………...69 7.3 待測非長直纜線的自我補償……………………………………..71 7.3.1非長直纜線彎曲程度及無鐵芯式霍爾比流器擺放角度問題...........................................................................................71 第八章 結論與未來展望…..……………………………………………….82 8.1 結論………………………………………………………………..82 8.2 未來展望…………………………………………………………..83 參考文獻…………………………………………………………………….85 作者簡介…………………………………………………………………….89

    [1] The PSRC Working Group, “An IEEE Power System Relay Committee Report: Gapped Core Current Transformer Characteristics and Performance,” IEEE Transactions on Power Delivery, Vol. 5, No. 4, pp. 1732–1740, Oct. 1990.
    [2] T. W. Cease and P. Johnston, “A Magneto-Optic Current Transducer,” IEEE Transactions on Power Delivery, Vol. 5, No. 2, pp. 548–555, April 1990.
    [3] W. F. Ray, “Rogowski Transducers for High Bandwidth High Current Measurement,” IEEE Colloquium on Low Frequency Power Measurement and Analysis, London, Nov. 2, 1994.
    [4] A. Radun, “An Alternative Low-Cost Current-Sensing Scheme for High-Current Power Electronics Circuits,” IEEE Transactions on Industrial Electonics, Vol. 42, No. 1, pp. 78–84, Feb. 1995.
    [5] S. A. Dyer, Survey of Instrumentation and Measurement, John Wiley & Sons, Inc., pp. 344, USA, 2001.
    [6] W. F. Ray and C. R. Hewson, “High Performance Rogowski Current Transducers,” Conference Record of the 2000 IEEE Industry Applications Conference, Vol. 5, pp. 3083–3090, Rome, Oct. 2000.
    [7] 蔡元繽,「電力電流微感測器設計」,國立台灣科技大學碩士論文,民國九十三年六月。
    [8] N. Chen and Y. P. Tsai, “Power Current Micro Sensor,” Taiwan Patent I263050, Oct. 1, 2006.
    [9] L. Cristaldi, A. Ferrero, M. Lazzaroni, and R. Ottoboni, “A Linearization Method for Commercial Hall-Effect Current Transducers,” IEEE Transactions on Instrumentation and Measurement, Vol. 50, No. 5, pp. 1149-1153, Oct. 2001.
    [10] P. Poulichet, F. Costa, and É. Labouré, “A New High-current Large-bandwidth DC Active Current Probe for Power Electronics,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 1, pp. 243-254, Feb. 2005.
    [11] Application Notes, “Isolated Current and Voltage Transducers Characteristics–Applications–Calculations,” LEM Corporation Communication, Geneva, Switzerland, 1996.
    [12] X. Ai, H. Bao, and Y.H. Song, “Novel Method of Error Current Compensation for Hall-effect-based High-accuracy Current Transformer,” IEEE Transactions on Power Delivery, Vol. 20, No. 1, pp. 11–14, Jan. 2005.
    [13] 盧明智、盧鵬任,感測器應用與線路分析,第10-2~10-4頁,台北,全華科技,民國八十九年。
    [14] 張連壁,磁感測器及使用法,第59~87頁,台北,文笙書局,民國八十年。
    [15] 孫清華,感測器應用電路的設計與製作,第164~194頁,台北,全華科技,民國八十一年。
    [16] 楊善國,感測與量度工程,第217~223頁,台北,全華科技,民國八十三年。
    [17] 陳丁在,機電感測器應用手冊,第82~84頁,台北,全華科技,民國八十四年。
    [18] 陳坤隆,「電力電流微感測器測試與改善」,國立台灣科技大學碩士論文,民國九十五年六月。
    [19] 施敏著,黃調元譯,半導體元件物理與製作技術,第799頁,新竹市,國立交通大學出版社,民國九十一年。
    [20] Y. Kanda, M. Migitaka, H. Yamamoto, H. Morozumi, T. Okabe, and S. Okazaki, “Silicon Hall-Effect Power IC’s for Brushless Motors,” IEEE Transactions on Electron Devices, Vol. ED-29, No. 1, pp. 151–154, Jan. 1982.
    [21] C. Schott, F. Burger, H. Blanchard, and L. Chiesi, “Modern Integrated Silicon Hall Sensors,” Sensor Review, Vol. 18, No. 4, pp. 252-257, 1998.
    [22] F. Burger, P. A. Besse, and R. S. Popovic, “New Fully Integrated 3-D Silicon Hall Sensor for Precise Angular-position Measurements,” Sensors and Actuators A, Vol. 67, pp. 72-76, 1998.
    [23] A1301 and A1302 Datasheets, Allegro MicroSstems, Inc., 2005.
    [24] Instrument Transformers–Part 1: Current Transformers, IEC Standard 60044-1, Feb. 2003.
    [25] Instrument Transformers–Part 3: Combined Transformers, IEC Standard 60044-3, December 2002.
    [26] Instrument Transformers–Part 6: Requirements for Protective Current Transformers for Transient Performance, IEC Standard 60044-6, Mar. 1992.
    [27] IEEE Standard Requirements for Instrument Transformers, ANSI/IEEE Standard C57.13, July 2008.
    [28] Instrument Transformers,中華民國國家標準 CNS 11437,民國九十年十二月。
    [29] Current Transformers, 中華人民共和國國家標準 GB 1208, Mar. 2007.
    [30] Instrument Transformers–Part 8: Electronic Current Transformers, IEC Standard 60044-8, July 2002.
    [31] IEEE Recommended Practice for Testing Electronics Transformers and Inductors, ANSI/IEEE Standard 389, Sept. 2007.
    [32] IEEE Standard for Analog Inputs to Protective Relays from Electronic Voltage and Current Transducers, ANSI/IEEE Standard C37.92, Sept. 2005.
    [33] Instrument Transformers – Part 8: Electronic Current Transformers, 中華人民共和國國家標準 GB/T 20840.8, Jan. 2007.
    [34] IEEE Guide for the Application of Rogowski Coils Used for Protective Relaying Purposes, ANSI/IEEE Standard C37.235, Feb. 2008.
    [35] D. K. Cheng, Field and Wave Electromagnetics, Addison-Wesley Publishing Co., Inc., pp. 226 and 321–345, Canada, 1989.
    [36] 惠汝生,LabVIEW 7.1 Express 圖控程式應用,全華科技,民國九十三年十月。

    QR CODE