簡易檢索 / 詳目顯示

研究生: 林志鴻
Chih-Hung Lin
論文名稱: 用相圖計算方法預測銅-鎳-鈦三元系統之 金屬玻璃形成區域
Prediction of the Metallic Glass Formation Regions for the Cu-Ni-Ti Ternary System Using the CALculation of PHAse Diagram (CALPHAD) Method
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 周賢鎧
Shyan-kay Jou
陳志銘
Chih-Ming Chen
蔡哲瑋
Che-Wei Tsai
蕭憲明
Hsien-Ming Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 金屬玻璃相圖計算銅鎳鈦三元系統非晶區域
外文關鍵詞: metallic glass, CALPHAD, Cu-Ni-Ti Ternary System, amorphous region
相關次數: 點閱:197下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 到目前為止,許多研究開發出具有臨界尺寸直至厘米級的銅基金屬玻璃。然而,已知的合金系統基本上限於銅-鋯基合金系統,且新形狀BMG複合材料的開發對於拓展金屬玻璃發展和改善這些複合材料的性質是必不可少的。最近,在Cu-Ni-Ti三元系中的L ⇔ TiCu + TiNi成分範圍附近發現了新的BMG。獲得直徑為1和1.5mm的棒狀金屬玻璃,其也表現出良好的機械性能。

    在本研究中,用計算相圖(CALPHAD)方法來預測金屬玻璃形成區域。利用文獻中的參數,重新評估了Cu-Ni-Ti三元相圖。在建立合理的Cu-Ni-Ti熱力學數據庫來描述每個相後,可以繪製二元和三元相圖。通過結合抑制金屬間化合物(IMC)相的亞穩相圖,液體互溶間隙和旋節線曲線,將熱力學參數用於預測金屬玻璃區域。預測區域與本研究中的實驗數據以及文獻的實驗結果一致。


    So far, many researchers developed the Cu-based metallic glass with critical size until centimeter-scale. However, known alloy systems are basically limited to Cu–Zr-based alloys and the development of new shape memory BMG composites is essential to broaden the knowledge and to improve the properties of these composites. Very recently, new BMGs have been found in the Cu-Ni-Ti ternary system near the pseudo-binary eutectic (L ⇔ TiCu + TiNi). Fully glassy rods of 1 and 1.5 mm diameter were obtained, which also exhibit good mechanical properties
    In this study focused on the calculation of phase diagram (CALPHAD) to predict the metallic glass region. The re-assessment of Cu-Ni-Ti ternary phase diagram have established well by using the parameters from the pieces of literature. After establishing the reasonable Cu-Ni-Ti thermodynamic database to describe each phase, the binary and ternary phase diagram can be plotted. The thermodynamic parameters were also used for predicting the metallic glass regions by combining the metastable phase diagram which suppressed intermetallic compounds (IMCs) phases, liquid miscibility gap, and spinodal curve. The predicted region have consistency with the experimental data and experimental result from the pieces of literature in bulk metallic glass alloys which done in this study.

    Abstract Acknowledgment List of Figures List of Tables Chapter 1 Introduction Chapter 2 Literature Review 2.1 Metallic Glasses 2.1.1 Development of Metallic Glasses 2.1.2 Properties of Metallic Glasses 2.1.3 Cu-Ni-Ti Amorphous Alloys 2.2 Phase Diagrams 2.2.1 Binary System 2.2.2 Cu-Ni-Ti Ternary System Chapter 3 Experimental Methods 3.1 Calculation of Phase Diagram 3.2Cu-Ni-Ti Bulk Metallic Glass Chapter 4 Results and Discussion 4.1 Cu-Ti-Ni Calculated Ternary Phase Diagram 4.2 Prediction of Bulk Metallic Glasses Chapter 5 Conclusion Appendix Reference

    [1] Klement, W., Willens, R.H., and Duwez, P.O.L., Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960. 187(4740): p. 869-870.
    [2] Chen, H.S., and Turnbull, D., Formation, stability, and structure of Palladium-Silicon based alloy glasses. Acta Metallurgica, 1969. 17(8): p. 1021-1031.
    [3] Chen, H.S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
    [4] Zhang, T., Inoue, A., and Masumoto, T., Amorphous Zr-Al-Tm (Tm = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100-K. Materials Transactions, JIM, 1991. 32(11): p. 1005-1010.
    [5] Inoue, A., Zhang, T., and Masumoto, T., Glass forming ability of alloys. Journal of Non-Crystalline Solids, 1993. 156-158: p. 473-480.
    [6] Telford, M., The case of bulk metallic glass. Materials Today, 2004. 7: p. 36-43.
    [7] Inoue, A., Stabillization of metallic supercooled liquid and bulk amorphous alloys. Acta Materials, 2000. 48(1): p. 279-306.
    [8] Inoue, A., Bulk amorphous alloys: preparation and fundamental characteristics. Materials Science Foundation. 1998, Zurich, Swiss: Trans Tech Publications. 116.
    [9] Inoue, A., Shibata, T., and Zhang, T., Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys. Materials Transactions, JIM, 1995. 36(12): p. 1420-1426.
    [10] Inoue, A., High-strength bulk amorphous-alloys with low critical cooling rates. Materials Transactions, JIM, 1995. 36(7): p. 866-875.
    [11] Suryanaraya, C., and Inoue, A., Bulk metallic glasses. 2011, New York: CRC Press.
    [12] Bing, Y., Yong, D., and Yong, L., Recent progress in criterions for glass forming ability. Transactions of Nonferrous Metals Society of China, 2009. 19(1): p. 78-84.
    [13] Tang, C., and Zhou, H., Thermodynamics - physical chemistry of aqueous systems. 2011. InTech.
    [14] Turnbull, D., Under what conditions can a glass be formed?. Contemporary Physics, 1969. 10(5): p. 473-488.
    [15] Lu, Z.P., and Liu, C.T., A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
    [16] Ediger, M.D., Angell C.A., and Nagel S.R., Supercooled liquids and glasses. Journal of Physical Chemistry, 1996. 100(31): p. 13200-13212.
    [17] Chen, H.S., and Turnbull, D., Evidence of a glass-liquid transition in a Gold-Germanium-Silicon alloy. Journal of Chemical Physics, 1968. 48(6): p. 2560-2571.
    [18] Li, Y., A relationship between glass-forming ability and reduced glass transition temperature near eutectic composition. Materials Transactions, 2001. 42(4): p. 556-561.
    [19] Johnson, W.L., Bulk glass-forming metallic alloys: Science and Technology. MRS Bulletin, 1999. 24(10): p. 42-56.
    [20] Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K., High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Materialia, 2001. 49(14): p. 2645-2652.
    [21] Dai, C.L., Guo, H., Li, Y., and Xu, J., A new composition zone of bulk metallic glass formation in the Cu–Zr–Ti ternary system and its correlation with the eutectic reaction. Journal of Non-Crystalline Solids, 2008. 354(31): p. 3659-3665.
    [22] Men, H., Pang, S.J., and Zhang, T., Glass-forming ability and mechanical properties of Cu50Zr50−xTix alloys. Materials Science and Engineering: A, 2005. 408(1-2): p. 326-329.
    [23] Cheung, T.L. and Shek, C.H., Thermal and mechanical properties of Cu–Zr–Al bulk metallic glasses. Journal of alloys and compounds, 2007. 434: p.71-74.
    [24] Jia, P., Guo, H., Li, Y., Xu, J., and Ma, E., A new Cu–Hf–Al ternary bulk metallic glass with high glass forming ability and ductility. Scripta Materialia, 2006. 54(12): p.2165-2168.
    [25] Xu, D., Duan, G., and Johnson, W.L., Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Physical review letters, 2004. 92(24): p.245504.
    [26] Lee, S.W., Huh, M.Y., Fleury, E., and Lee, J.C., Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Materialia, 2006. 54(2): p.349-355.
    [27] Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C., Enhancement of the glass forming ability of Cu− Zr− Al alloys by Ag addition. Metals and materials International, 2004. 10(6): p.575-579.
    [28] Wang YL and Xu J., Ti (Zr)-Cu-Ni Bulk Metallic Glasses with Optimal Glass-Forming Ability and Their Compressive Properties. Metall Mater Trans A 39A (2008): p. 2990–2997
    [29] Callister, W.D. and Wiley, J., Material science and engineering: an introduction. 2007, USA: John Willey & Sons, Inc. 255.
    [30] Rhines, F.N., Phase diagrams in metallurgy: their development and application. Metallurgy and metallurgical engineering series. 1965, New York,: McGraw-Hill. 340.
    [31] Askeland, D.R. and Wright, W.J., The science and engineering of materials seventh edition. 2015, Boston: Cengange Learning.
    [32] Smith, J.F., Chapter one - introduction to phase diagrams A2 - Zhao, J.C, in methods for phase diagram determination. 2007, Oxford: Elsevier Science Ltd. p. 1-21.
    [33] Murray, J., Phase Diagrams of Binary Titanium Alloys. 1987, Metals Park, Ohio: ASM International.
    [34] Karlsson, N., An x-ray study of the phases in the copper-titanium system. J Inst Met, 1951. 79: p. 391-405.
    [35] Canale, P. and Servant, C., Thermodynamic Assessment of the Cu–Ti System Taking into Account the New Stable Phase CuTi3. Zeitschrift für Metallkunde, 2002. 93(4): p. 273-276.
    [36] Klotz, U.E., Liu, C., Uggowitzer, P.J., and Löffler, J.F., Experimental investigation of the Cu–Ti–Zr system at 800 °C. Intermetallics, 2007. 15(12): p. 1666-1671.
    [37] Wang, J., Liu, C., Leinenbach, C., Klotz, U.E., Uggowitzer, P.J., and Löffler, J.F., Experimental investigation and thermodynamic assessment of the Cu–Sn–Ti ternary system. Calphad, 2011. 35(1): p. 82-94.
    [38] D.J. Chakrabarti, D.E. Laughlin, S.W. Chen, and Y.A. Chang, in: VOLUME, ASM Handbook. 3: Alloy phase diagrams. ASM international, 1992.
    [39] J.L. Murray in: VOLUME, ASM Handbook. 3: Alloy phase diagrams. ASM international, 1992.
    [40] S.P. Alisova and P.B. Budberg: “The Ti-Cu-Ni Phase Diagram,” Ross. Akad. Nauk., Metally, 1992, 4, pp. 218-23 (in Russian). (Phase Equilibria, #)
    [41] H.U. Pfeifer, S. Bhan, K. Schubert, J. Less Common Met. 14 (1968) 291–302.
    [42] W.J.Zhu, L.I.Duarte, C.Leinenbach Experimental study and thermodynamic assessment of the Cu-Ni-Ti system CALPHAD Computer Coupling of Phase Diagrams and Thermochemistry 47 (2014)9–22
    [43] F.J.J. van Loo, G.F. Bastin, Phase Relations in the Ternary Ti-Ni-Cu System at 900 oC, DIMETA-82, Diffusion in Metals and Alloys: International conference, Tihany, Hungaria, 1982, pp. 580–592.
    [44] F.J.J. van Loo, G.F. Bastin, A.J.H. Leenen, Phase Relations in the Ternary Ti-Ni-Cu System at 800 and 870 oC , J. Less Common Met. 57 (1978) 111–121.
    [45] H. Zhang, Y. He, F. Yang, H.S. Liu, Z.P. Jin, Thermodynamic assessment of Cu–Ni–Ti ternary system assisted with key measurementsThermochim. Acta 574 (2013) 121–132.
    [46] M.A. Turchanin, A.R. Abdulov, P.G. Agraval, L.A. Dreval, Russ. Metall. 6 (2006) 500–504. Van Laar, J., Melting or solidification curves in binary system. Z Phys Chem, 1908. 63: p. 216.
    [47] Wagner, C., Mellgren, S., and Westbrook, J.H., Thermodynamics of alloys. 1952, Addison-Wesley Press.
    [48] Kaufman, L. and Bernstein, H., Computer calculation of phase diagrams. With special reference to refractory metals. 1970, New York: Academic Press Inc.
    [49] Spencer, P.J., A brief history of CALPHAD. Calphad, 2008. 32(1): p. 1-8.
    [50] Hsiao, H.M, Prediction of the metallic glass formation regions for the Ag-Al-Cu-Zr quartenary system by the calculation of phase diagram (CALPHAD) method. 2015. Doctoral dissertation.
    [51] Lukas, H.L., Fries, S.G., and Sundman, B., Computational thermodynamics: the Calphad method. Vol. 131. 2007, Cambridge: Cambridge university press Cambridge
    [52] Dinsdale, A.T., SGTE data for pure elements. Calphad, 1991. 15(4): p. 317-425.
    [53] Redlich, O. and Kister, A.T., Thermodynamics of Nonelectrolyte Solutions - x-y-t relations in a Binary System. Industrial & Engineering Chemistry, 1948. 40(2): p. 341-345.
    [54] Kumar, K.H., Ansara, I., Wollants, P., and Delaey, L., Thermodynamic optimisation of the Cu-Ti system. Zeitschrift für Metallkunde, 1996. 87(8): p. 666-672.
    [55] G. Cacciamani, J.C.Schuster, Cu–Ni–Ti (Copper–Nickel–Titanium), in:G.Effenberg, S.Ilyenko(Eds.),Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Springer-Verlag, Germany, 2005, pp.266–283.
    [56] T.Tokunaga, K.Hashima, H.Ohtani, M.Hasebe, Thermodynamic Analysis of the Ni-Si-Ti System Using Thermochemical Properties Determined from Ab Initio CalculationsMater.Trans. 45(2004) 1507–1514.
    [57] S.A. Mey, Thermodynamic Reevaluation of the Cu-Ni system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1992. 16(3): p. 255-260.
    [58] Colinet, C., Pasturel, A., and Buschow, K.H.J., Enthalpies of formation of Ti-Cu intermetallic and amorphous phases. Journal of alloys and compounds, 1997. 247(1): p. 15-19.
    [59] H. Liang, Z.P. Jin, CALPHAD 17 (1993) 415–426.
    [60] N. Saunders, Ni-Database, Thermo Tech Ltd., Guildford, 1995.
    [61] P. Bellen, K.C.H. Kumar, P. Wollants, Thermodynamic assessment of the Ni-Ti phase diagram Z. Met. 87 (1996) 972–978.
    [62] W. Tang, B. Sundman, R. Sandström, C. Qiu, New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni systemActa Mater. 47 (1999) 3457–3468.
    [63] J.D. Keyzer, G. Cacciamani, N. Dupin, P. Wollants, Thermodynamic modeling and optimization of the Fe–Ni–Ti system. CALPHAD 33 (2009) 109–123.
    [64] Chen, S.L., Daniel, S., Zhang, F., Chang, Y.A., Yan, X.Y., Xie, F.Y., Schmid-Fetzer, R., and Oates, W.A., The PANDAT software package and its applications. Calphad, 2002. 26(2): p. 175-188.
    [65] J.H.N. vanVucht,J. Influence of radius ratio on the structure of intermetallic compounds of the AB3 type, Less Common Met. 11 (1966) 308–322.

    QR CODE