簡易檢索 / 詳目顯示

研究生: 毛姿穎
Tzu-Zing Mao
論文名稱: 氮摻雜石墨烯以及矽摻雜石墨烯之研究
Investigation of N-doped Graphene and Si-doped Graphene
指導教授: 周賢鎧
Shyankay Jou
口試委員: 施文欽
Wen-Ching, Shih
王秋燕
Chiu-Yen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 石墨烯矽摻雜石墨烯氮摻雜石墨烯光感測器石墨烯增強拉曼散色
外文關鍵詞: N-doped graphene, Si-doped graphene, Graphene, Photodetectors, Graphene-enhanced Raman scattering
相關次數: 點閱:415下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究分成四部分,第一部分為以聚碳矽烷作為前驅物的化學氣相沉積法製備矽摻雜石墨烯 (Si-doped graphene, SiG),以及利用氮氣微波電漿將原石墨烯轉化為氮摻雜石墨烯 (N-doped graphene, NG)。更進一步,將製作好的矽摻雜石墨烯再加上微波氮氣電漿製備出氮矽摻雜石磨烯 (Nitrogen and Silicon doped graphene graphene N-SiG),並與以甲烷為碳源相似製程參數的原石墨烯 (Pristine graphene , PG ) 作為比較,探討其性質是否不同。我們以拉曼光譜、XPS、UV-Vis 分析其材料特性。在拉曼光譜中的分析中,我們發現了在這四種PG、NG、SiG、N-SiG中存在著些差異,經過電漿處理的NG與N-SiG,可以看見D-band變高、2D-band下降,可歸因於氮摻雜入石墨烯中,造成晶格失序所引起的缺陷。以XPS 成分組成石墨烯,確認其含有矽、氮的存在。在UV-Vis 分析中SiG穿透比PG好,但在摻氮後穿透度明顯下降。
第二部分為將四種石墨烯製作成場效電晶體,看其PG、NG在汲極電流-閘極電壓 (Id-Vd) 圖中狄拉克點 (Dirac point) 的偏移狀況,證明摻雜改變石墨烯的能帶構造。
第三部分為將摻雜石墨烯與原石墨烯應用於蕭特基光感測器之上,其PG、NG、SiG 與 N-SiG 之蕭特基能障分別為 0.77 eV、0.76 eV、0.78 eV 與 0.76 eV,由蕭特基能障可推算出 PG、NG、SiG 與 N-SiG 之功函數分別為 4.82 eV、4.81 eV、4.83 eV 與 4.81 eV。接著量測其光感測特性,發現元件具有 Self-Power 之特性,即為元件可在無外加電壓下操作。
最後,將這四種石墨烯為底,浸入10-5 M螢光性染料中進行拉曼的強化,可以看見缺陷越大,強化的效果越強,摻氮與摻矽也有增強的作用,NG比原石墨烯激發效果最高至12倍,而SiG、N-SiG也有增高2至4倍。


This study can be separated into four major parts. Firstly, we synthesized silicon doped graphene (SiG) from polycarbosilane by chemical vapor deposition (CVD) , nitrogen-doped graphene (NG) by nitriding pristine graphenen (PG) via nitrogen microwave plasma (NG) and nitrogen and silicon doped graphene (N-SiG) by nitriding SiG. Material properties of PG, SiG, NG and N-SiG were compared.
Raman spectroscopy, XPS, and UV-Vis spectroscopy were employed to characterize the structure and properties of PG, NG, SiG and N-SiG. Raman spectra of NG and N-SiG shows stronger intensity of D-band and the weaker of 2D-band than those of PG. The change of the D-band and 2D-band were caused by defects that might be attributed to N doping to graphene leading deformed lattice structure of graphene. We used XPS to confirm the existence of Si and N in the doped graphene. In the UV-vis transmittance spectra, SiG is more transparent than PG, but both NG and N-SiG via nitrogen microwave plasma treatment have lower transmittance.
Secondly, we fabricated graphene-base field-effect transistors. The drain current - gate voltage (Id-Vds) curves show Dirac point shift in difference voltage and prove that Ferimi level of graphene change by doping.
Thirdly, we fabricated PG/n-Si, NG/n-Si, SiG/n-Si and N-SiG/n-Si Schottky photodetectors. We measured the I-V curves of these photodetectors and found that the Schottky barrier hights of PG/n-Si, NG/n-Si, SiG/n-Si and N-SiG/n-Si Schottky photodetectors are 0.77 eV, 0.76 eV, 0.78 eV and 0.76 eV. The work fuction of PG, NG, SiG and N-SiG, calculated from the Schottky barrier heights, are 4.82 eV, 4.81 eV, 4.83 eV and 4.81 eV, respectively. The photodetectors were self-powered. The NG/n-Si Schottky photodetector showed better performance than the PG/n-Si.
Finally, we demonstrated that four kind of graphene can films enhanced the Raman scattering of probe molecules. Our findings could be used to develop high-performance sensors, which can detect trace amount of organic and fluorescent molecules.

第 1 章 前言............................................................................................................1 第 2 章 文獻回顧....................................................................................................2 2.1 石墨烯的介紹.................................................................................................2 2.2 石墨烯的製備方法.........................................................................................4 2.2.1 機械剝離法 (Mechanical exfoliation)................................................4 2.2.2 磊晶成長法 (Epitaxial growth)..........................................................5 2.2.3 氧化還原法 (Graphene oxide reduction) ...........................................5 2.2.4 化學氣相沉積法 (Chemical vapor deposition, CVD) .......................6 2.3 石墨烯之摻雜.................................................................................................7 2.3.1 表面摻雜 (surface transfer doping)....................................................8 2.3.2 取代摻雜 (substitional doping) ..........................................................9 2.4 石墨烯之拉曼分析.......................................................................................15 2.4.1 基本分析............................................................................................15 2.4.2 摻雜後分析........................................................................................17 2.5 石墨烯之電晶體...........................................................................................20 2.5.1 金屬氧化物半導體場效電晶體 (Metal-Oxide-Semiconductor FieldEffect Transistor, MOSFET)........................................................................20 2.5.2 石墨烯場效量測................................................................................24 2.5.3 摻雜石墨烯場效量測........................................................................26 2.6 石墨烯於蕭特基光感測器之應用...............................................................28 2.7 石墨烯增強拉曼散色效應...........................................................................35 2.8 研究動機.......................................................................................................37 第 3 章 實驗儀器與實驗方法..............................................................................38 3.1 實驗材料與藥品規格...................................................................................38 3.2 實驗儀器.......................................................................................................40 3.3 實驗原理.......................................................................................................41 3.3.1 化學氣相沉積系統 (Chemical Vapor Deposition system) ..............41 3.3.2 顯微拉曼光譜儀 ( Microscopes Raman Spectrometer)...................43 3.3.3 磁控式濺鍍系統 (Magnetic Sputtering)..........................................45 3.3.4 微波電漿系統 (Microwave plasma, MWP )[57] .............................46 3.3.5 X 射線光電子能譜儀 (X-ray Photoelectron Spectrum, XPS)..........47 3.3.6 紫外光可見光光譜儀........................................................................48 3.3.7 光感測器量測系統............................................................................48 3.4 實驗步驟.......................................................................................................49 3.4.1 清洗基板............................................................................................49 3.4.2 成長石墨烯........................................................................................50 3.4.3 轉移至特定基板................................................................................54 3.4.4 黃光微影製程....................................................................................56 3.4.5 真空鍍膜製程....................................................................................59 3.4.6 石墨烯電晶體的製備........................................................................60 3.4.7 石墨烯的光感元件製備....................................................................63 3.4.8 石墨烯拉曼強化之製作....................................................................64 第 4 章 結果與討論..............................................................................................65 4.1 石墨烯之性質討論.......................................................................................65 4.1.1 拉曼光譜分析....................................................................................65 4.1.2 X 射線光電子能譜分析.....................................................................66 4.1.3 UV 穿透分析......................................................................................78 4.2 石墨烯之場效量測.......................................................................................79 4.2.1 下閘極場效電晶體............................................................................79 4.2.2 上閘極場效電晶體............................................................................81 4.3 石墨烯之蕭特基光感測器分析...................................................................82 4.3.1 蕭特基二極體之分析........................................................................82 4.3.2 蕭特基二極體應用於光感測器元件分析........................................92 4.3.3 蕭特基二極體之真空分析..............................................................100 4.4 石墨烯之拉曼強化.....................................................................................105 第 5 章 結論........................................................................................................108 第 6 章 未來展望................................................................................................110

[1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, Jan-Mar 2009.
[3] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 2009.
[4] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, Mar 2008.
[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, Jun 2008.
[6] 劉偉仁, 蘇清源, 江偉宏, 郭信良, 吳定宇, 陳貴賢, 許新城, 孫嘉良, 許淑婷, 沈駿, 邱鈺蛟, 蕭碩信, and 張峰碩, 石墨烯技術. 五南圖書, 2015.
[7] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, Jun 2008.
[8] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, Jul 2008.
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 2004.
[10] C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayou, T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, May 2006.
[11] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, Jun 2007.
[12] C. Nethravathi and M. Rajamathi, "Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide," Carbon, vol. 46, pp. 1994-1998, 2008.
[13] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, and F. Zhang, "Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation," Advanced Materials, vol. 20, pp. 4490-4493, 2008.
[14] X. S. Li, W. W. Cai, L. Colombo, and R. S. Ruoff, "Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling," Nano Letters, vol. 9, pp. 4268-4272, Dec 2009.
[15] Q. K. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 3, Sep 2008.
[16] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nature Materials, vol. 6, pp. 652-655, Sep 2007.
[17] I. Gierz, C. Riedl, U. Starke, C. R. Ast, and K. Kern, "Atomic Hole Doping of Graphene," Nano Letters, vol. 8, pp. 4603-4607, Dec 2008.
[18] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, "Doping graphene with metal contacts," Physical Review Letters, vol. 101, p. 026803, Jul 11 2008.
[19] H. Liu, Y. Liu, and D. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, vol. 21, pp. 3335-3345, 2011.
[20] P. A. Denis, "Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur," Chemical Physics Letters, vol. 492, pp. 251-257, Jun 2010.
[21] X. Li, L. Fan, Z. Li, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu, "Boron Doping of Graphene for Graphene-Silicon p-n Junction Solar Cells," Advanced Energy Materials, vol. 2, pp. 425-429, 2012.
[22] D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 9, pp. 1752-1758, May 2009.
[23] I. Bertóti, M. Mohai, and K. László, "Surface modification of graphene and graphite by nitrogen plasma: Determination of chemical state alterations and assignments by quantitative X-ray photoelectron spectroscopy," Carbon, vol. 84, pp. 185-196, 2015.
[24] A. Dias, N. Bundaleski, E. Tatarova, F. M. Dias, M. Abrashev, U. Cvelbar, O. M. N. D. Teodoro, and J. Henriques, "Production of N-graphene by microwave N2-Ar plasma," Journal of Physics D: Applied Physics, vol. 49, p. 055307, 2016.
[25] Y.-C. Lin, C.-Y. Lin, and P.-W. Chiu, "Controllable graphene N-doping with ammonia plasma," Applied Physics Letters, vol. 96, p. 133110, 2010.
[26] A. Mueller, M. G. Schwab, N. Encinas, D. Vollmer, H. Sachdev, and K. Müllen, "Generation of nitrile groups on graphites in a nitrogen RF-plasma discharge," Carbon, vol. 84, pp. 426-433, 2015.
[27] M. Rybin, A. Pereyaslavtsev, T. Vasilieva, V. Myasnikov, I. Sokolov, A. Pavlova, E. Obraztsova, A. Khomich, V. Ralchenko, and E. Obraztsova, "Efficient nitrogen doping of graphene by plasma treatment," Carbon, vol. 96, pp. 196-202, 2016.
[28] W. Yang, X. Xu, Z. Tu, Z. Li, B. You, Y. Li, S. I. Raj, F. Yang, L. Zhang, S. Chen, and A. Wang, "Nitrogen plasma modified CVD grown graphene as counter electrodes for bifacial dye-sensitized solar cells," Electrochimica Acta, vol. 173, pp. 715-720, 2015.
[29] S. Sakulsermsuk, P. Singjai, and C. Chaiwong, "Influence of plasma process on the nitrogen configuration in graphene," Diamond and Related Materials, vol. 70, pp. 211-218, 2016.
[30] H. Gao, Z. Liu, L. Song, W. H. Guo, W. Gao, L. J. Ci, A. Rao, W. J. Quan, R. Vajtai, and P. M. Ajayan, "Synthesis of S-doped graphene by liquid precursor," Nanotechnology, vol. 23, p. 7, Jul 2012.
[31] S. Some, J. Kim, K. Lee, A. Kulkarni, Y. Yoon, S. Lee, T. Kim, and H. Lee, "Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors," Advanced Materials, vol. 24, pp. 5481-5486, Oct 2012.
[32] Z. G. Wang, P. J. Li, Y. F. Chen, J. B. Liu, W. L. Zhang, Z. Guo, M. D. Dong, and Y. R. Li, "Synthesis, characterization and electrical properties of silicon-doped graphene films," Journal of Materials Chemistry C, vol. 3, pp. 6301-6306, 2015.
[33] L. Ci, L. Song, C. H. Jin, D. Jariwala, D. X. Wu, Y. J. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, "Atomic layers of hybridized boron nitride and graphene domains," Nature Materials, vol. 9, pp. 430-435, May 2010.
[34] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, p. 4, Nov 2006.
[35] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095-14107, May 2000.
[36] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, Jul 2007.
[37] B. D. Guo, Q. A. Liu, E. D. Chen, H. W. Zhu, L. A. Fang, and J. R. Gong, "Controllable N-Doping of Graphene," Nano Letters, vol. 10, pp. 4975-4980, Dec 2010.
[38] Computational Nanoelectronics and Emerging Devices Group-Electronic Devices. Available: https://www.ece.nus.edu.sg/stfpage/elelg/research.html
[39] ELECTRICAL ENGINEERING. Available: https://electronics.stackexchange.com/questions/18885/mosfet-as-a-switch-when-is-it-in-saturation
[40] Engineer Blogs-Transistor Interview Questions. Available: http://engineerblogs.org/2011/01/interview-questions-on-transistors/
[41] F. Schwierz, "Graphene transistors," Nature nanotechnology, vol. 5, pp. 487-496, Jul 2010.
[42] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, pp. 197-200, Nov 2005.
[43] A. A. M. I. J. N. M. C. A, C. L. J. Mater. Chem. CHsu, C. T. Lin, J. H. Huang, C. W. Chu, K. H. Wei, and L. J. Li, "Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells," Acs Nano, vol. 6, pp. 5031-5039, Jun 2012.
[44] X. Wang, L. J. Zhi, and K. Mullen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, vol. 8, pp. 323-327, Jan 2008.
[45] X. J. Wang, D. Li, Q. C. Zhang, L. P. Zou, F. L. Wang, J. Zhou, and Z. X. Zhang, "Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon," Thin Solid Films, vol. 592, pp. 281-286, Oct 2015.
[46] C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi, and S. B. Cronin, "Graphene-Silicon Schottky Diodes (vol 11, pg 1863, 2011)," Nano Letters, vol. 11, pp. 5097-5097, Nov 2011.
[47] T. T. Feng, D. Xie, Y. X. Lin, Y. Y. Zang, T. L. Ren, R. Song, H. M. Zhao, H. Tian, X. Li, H. W. Zhu, and L. T. Liu, "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate," Applied Physics Letters, vol. 99, p. 3, Dec 2011.
[48] C. Xie, P. Lv, B. A. Nie, J. S. Jie, X. W. Zhang, Z. Wang, P. Jiang, Z. Z. Hu, L. B. Luo, Z. F. Zhu, L. Wang, and C. Y. Wu, "Monolayer graphene film/silicon nanowire array Schottky junction solar cells," Applied Physics Letters, vol. 99, p. 3, Sep 2011.
[49] Z. X. Zhang, Y. X. Guo, X. J. Wang, D. Li, F. L. Wang, and S. S. Xie, "Direct Growth of Nanocrystalline Graphene/Graphite Transparent Electrodes on Si/SiO2 for Metal-Free Schottky Junction Photodetectors," Advanced Functional Materials, vol. 24, pp. 835-840, Feb 2014.
[50] X. M. Li, H. W. Zhu, K. L. Wang, A. Y. Cao, J. Q. Wei, C. Y. Li, Y. Jia, Z. Li, X. Li, and D. H. Wu, "Graphene-On-Silicon Schottky Junction Solar Cells," Advanced Materials, vol. 22, pp. 2743-+, Jul 2010.
[51] L. H. Zeng, C. Xie, L. L. Tao, H. Long, C. Y. Tang, Y. H. Tsang, and J. S. Jie, "Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector," Optics Express, vol. 23, pp. 4839-4846, Feb 2015.
[52] R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. C. Charlier, M. Pan, and M. Terrones, "Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing," Scientific Reports, vol. 2, p. 586, 2012.
[53] R. Lv, M. C. dos Santos, C. Antonelli, S. Feng, K. Fujisawa, A. Berkdemir, R. Cruz-Silva, A. L. Elias, N. Perea-Lopez, F. Lopez-Urias, H. Terrones, and M. Terrones, "Large-area Si-doped graphene: controllable synthesis and enhanced molecular sensing," Advanced Materials, vol. 26, pp. 7593-9, Dec 3 2014.
[54] S. Bhaviripudi, X. T. Jia, M. S. Dresselhaus, and J. Kong, "Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst," Nano Letters, vol. 10, pp. 4128-4133, Oct 2010.
[55] RAMAN SPECTROSCOPY (SURF). Available: https://www.surfgroup.be/raman
[56] RAMAN SPECTROSCOPY (OMEGA optical). Available: http://www.omegafilters.com/applications/raman-spectroscopy/
[57] 吳雅婷, "電漿氧化成長氧化鋁與氧化鋁-氧化銅介電層之單極式電阻切換研究," 國立台灣科技大學材料科學與工程研究所論文, 民國101年.
[58] X-ray photoelectron spectroscopy. Available: https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
[59] B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction: Prentice Hall, 2001.
[60] H. Xiao(蕭宏), 半導體製程技術導論: 全華圖書, 2012.
[61] W.-T. Y. (楊婉婷), W.-J. S. (蘇偉誌), H.-H. C. (鄭弘祥), G.-Y. L. (林冠宇), Y.-H. J. (江易翰), Y.-L. W. (王友利), W.-S. G. (顏萬祥), and K.-Y. L. (李奎毅), "Graphene lateral p-n diode fabricated by nitrogen plasma treatment " presented at the 材料年會, 2016.
[62] W. J. Su, H. C. Chang, S. Hond, P. H. Lin, Y. S. Huang, and K. Y. Lee, "Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics," Physica E-Low-Dimensional Systems & Nanostructures, vol. 92, pp. 41-46, Aug 2017.

QR CODE