簡易檢索 / 詳目顯示

研究生: Sumedh Mabendra Shirsat
Sumedh Mabendra Shirsat
論文名稱: 氧化石墨烯/四苯基卟啉鐵先進氣體感測器於一氧化碳之檢測
Graphene Oxide/Iron Tetraphenyl Porphyrin for Advanced CO Detection
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 蔡孟霖
Meng-Lin Tsai
蔡東昇
Dung-Sheng Tsai
李傳沛
Chuan-Pei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 58
外文關鍵詞: Air pollution, Carbon monoxide, Chemiresistive Sensor, Gas analyte, Graphene, Porphyrin
相關次數: 點閱:54下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The identification of harmful gases has attracted considerable attention due to the growing concerns about the environment. In this present investigation, we utilized free-based tetraphenyl porphyrin (TPP) and iron tetraphenyl porphyrin (FeTPP) to modify thermally reduced graphene oxide (rGO) for detecting carbon monoxide (CO). Sensors incorporating TPP and FeTPP functionalized rGO (FeTPP@rGO) were created on a glass substrate with copper electrodes coated through thermal means. Various characterization techniques, including Raman spectroscopy, UV–visible spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Energy-dispersive Spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy, were employed for a thorough examination of the materials. The operational performance of the device was further assessed through current–voltage (I–V) characteristics. Significantly, the FeTPP@rGO device demonstrated heightened sensitivity in CO detection. Utilizing a chemiresistive sensing approach, the developed device exhibited an admirable response time of 60 seconds and a recovery time of 120 seconds, with an impressive low detection limit of 2.5 ppm. These results highlight the potential of the FeTPP@rGO sensor for accurately detecting carbon monoxide in gaseous environments.

    Keywords: Air pollution, Carbon monoxide Chemiresistive sensor, Gas analyte, Graphene, Porphyrin

    Acknowledgment I Abstract II Table of Contents III List of Figures V List of Tables VII Chapter 1: Introduction 1 1.1 Air Pollution 1 1.1.1 Sources of Air Pollution: 1 1.1.2 Human Health Impacts: 1 1.1.3 Environmental Consequences: 2 1.1.4 Global Reach and Transboundary Effects: 2 1.1.5 Mitigation Strategies: 2 1.2 Sensor Overview 3 1.2.1 Ideal Sensing Parameter 6 1.2.2 Sensor Dynamics: Insights into the Physics 7 1.3 Gas sensor 9 1.3.1 Chemiresistive sensor 9 1.3.2 ChemFET Sensor 10 1.3.3 Mass-sensitive sensors 11 1.3.4 Optical sensor 12 1.4 Literature review 12 1.4.1 Sensing modality 13 1.4.2 Sensing Materials Basic Concepts 14 1.4.3 Sensing Materials (Review) 16 1.5 Hypothesis 17 1.6 Objectives 18 1.7 Methodology 19 Chapter 2: Characterization Techniques 20 2.1 X-ray Diffraction (XRD) 20 2.2 Morphological Characterizations 22 2.2.1 Scanning Electron Microscopy (FESEM) with EDS 22 2.2.2 Atomic Force Microscopy (AFM) 23 2.3 Spectroscopic Characterizations 25 2.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 25 2.3.2 UV-Visible Spectroscopy 26 2.4 Electrical characterization 27 2.4.1 Current - Voltage (I-V) characterization 28 2.5 Gas Sensing Measurements 28 2.5.1 Chemiresistive Sensing 29 Chapter 3: Progressive CO Sensing via Exploring the Potential of Graphene Oxide/Iron Tetraphenyl Porphyrin Chemiresistive Technology 31 3.1 Introduction 31 3.2 Experimental Details 32 3.2.1 Synthesis of Graphene Oxide (GO) 32 3.2.2 Solution Crafting: FeTPP, TPP and GO Preparation Techniques 32 3.2.3 Characterizations 33 3.2.4 Sensor Fabrication and Graphene Oxide Thermal Reduction 33 3.2.5 Gas Sensing Measurements 34 3.3 Results and discussion 35 3.3.1 UV–visible, Raman, XRD and FTIR Characterizations 35 3.3.2 Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) Analysis 37 3.3.3 Sensor performance 40 3.4 Conclusions 44 References 45

    1.
    Axel, R.B., L.B. (Year). Odorant Receptors and the Organization of the Olfactory System. Nobel Media. Retrieved from http://www.nobelprize.org/nobel_prizes/medicine/laureates/2004/press.html
    2.
    Wilkens, W. F., & Hartman, J. D. (1964). An Electronic Analog for the Olfactory Processes a. Journal of Food Science, 29(3), 372-378.
    3.
    Buck, T. M., Allen, F. G., & Dalton, J. V. (1965). Detection of chemical species by surface effects on metals and semiconductors. Murray Hill, NJ, USA: Bell Telephone Laboratories.
    4.
    Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352-355.
    5.
    Wong, Y. C., Ang, B. C., Haseeb, A. S. M. A., Baharuddin, A. A., & Wong, Y. H. (2020). Conducting polymers as chemiresistive gas sensing materials: A review. Journal of the Electrochemical Society, 167(3), 037503.
    6.
    Yang, Z., Zhang, D., & Chen, H. (2019). MOF-derived indium oxide hollow microtubes/MoS2 nanoparticles for NO2 gas sensing. Sensors and Actuators B: Chemical, 300, 127037.
    7.
    Lee, E., Yoon, Y. S., & Kim, D. J. (2018). Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS sensors, 3(10), 2045-2060.
    8.
    Sajjad, S., Khan Leghari, S. A., & Iqbal, A. (2017). Study of graphene oxide structural features for catalytic, antibacterial, gas sensing, and metals decontamination environmental applications. ACS applied materials & interfaces, 9(50), 43393-43414.
    9.
    Jiang, H., Huang, C. C., Chan, M., & Hall, D. A. (2019, April). A 2-in-1 Temperature and Humidity Sensor Achieving 62 fJ· K 2 and 0.83 pJ·(% RH) 2. In 2019 IEEE Custom Integrated Circuits Conference (CICC) (pp. 1-4). IEEE.
    10.
    Young, S. J., & Tang, W. L. (2019). Wireless zinc oxide based pH sensor system. Journal of the Electrochemical Society, 166(9), B3047.
    11.
    Ingle, N. N., Sayyad, P., Bodkhe, G., Patil, H., Deshmukh, M., Mahadik, M., ... & Shirsat, M. (2021). ChemFET sensor: Repercussion of Swift Heavy Ion irradiation on nanorods of nickel-based (NRs-Ni3HHTP2) Metal-Organic framework.
    12.
    Ingle, N., Sayyad, P., Deshmukh, M., Bodkhe, G., Mahadik, M., Al-Gahouari, T., ... & Shirsat, M. D. (2021). A chemiresistive gas sensor for sensitive detection of SO 2 employing Ni-MOF modified–OH-SWNTs and–OH-MWNTs. Applied Physics A, 127, 1-10.
    13.
    Turemis, M., Zappi, D., Giardi, M. T., Basile, G., Ramanaviciene, A., Kapralovs, A., ... & Viter, R. (2020). ZnO/polyaniline composite based photoluminescence sensor for the determination of acetic acid vapor. Talanta, 211, 120658.
    14.
    Schwandt, C., Kumar, R. V., & Hills, M. P. (2018). Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sensors and Actuators B: Chemical, 265, 27-34.
    15.
    Tan, J., & Kerr, W. L. (2018). Determining degree of roasting in cocoa beans by artificial neural network (ANN)‐based electronic nose system and gas chromatography/mass spectrometry (GC/MS). Journal of the Science of Food and Agriculture, 98(10), 3851-3859.
    16.
    Erfan, M., Elsayed, A. A., Sabry, Y. M., Mortada, B., Sharaf, K., & Khalil, D. (2017, February). Environmental mid-infrared gas sensing using MEMS FTIR spectrometer. In MOEMS and Miniaturized Systems XVI (Vol. 10116, pp. 139-144). SPIE.
    17.
    Nazemi, H., Joseph, A., Park, J., & Emadi, A. (2019). Advanced micro-and nano-gas sensor technology: A review. Sensors, 19(6), 1285.
    18.
    Li, Z., Yao, Z., Haidry, A. A., Plecenik, T., Xie, L., Sun, L., & Fatima, Q. (2018). Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy, 43(45), 21114-21132.
    19.
    Li, J., Yan, H., Dang, H., & Meng, F. (2021). Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Optics & Laser Technology, 135, 106658.
    20.
    Ingle, N., Sayyad, P., Bodkhe, G., Mahadik, M., AL-Gahouari, T., Shirsat, S., & Shirsat, M. D. (2020). ChemFET Sensor: Nanorods of nickel-substituted Metal–Organic framework for detection of SO 2. Applied Physics A, 126, 1-9.
    21.
    Clavijo, W. P. (2017). Low-temperature Fabrication Process for Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors. Virginia Commonwealth University.
    22.
    Wang, L., Gao, J., & Xu, J. (2019). QCM formaldehyde sensing materials: Design and sensing mechanism. Sensors and actuators B: chemical, 293, 71-82.
    23.
    Zhang, D., Wang, D., Li, P., Zhou, X., Zong, X., & Dong, G. (2018). Facile fabrication of high-performance QCM humidity sensor based on layer-by-layer self-assembled polyaniline/graphene oxide nanocomposite film. Sensors and Actuators B: Chemical, 255, 1869-1877.
    24.
    Yuwono, A. S., & Lammers, P. S. (2004). Odor pollution in the environment and the detection instrumentation. Agricultural Engineering International: CIGR Journal.
    25.
    Liu, H., Shi, Y., & Wang, T. (2020). Design of a six-gas NDIR gas sensor using an integrated optical gas chamber. Optics express, 28(8), 11451-11462.
    26.
    Hodgkinson, J., & Tatam, R. P. (2012). Optical gas sensing: a review. Measurement science and technology, 24(1), 012004.
    27.
    Haridas, V., Sukhananazerin, A., Sneha, J. M., Pullithadathil, B., & Narayanan, B. (2020). α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Applied Surface Science, 517, 146158.
    28.
    Nasiri, N., & Clarke, C. (2019). Nanostructured chemiresistive gas sensors for medical applications. Sensors, 19(3), 462.
    29.
    Yan, F., Shen, G., Yang, X., Qi, T., Sun, J., Li, X., & Zhang, M. (2019). Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Applied Surface Science, 479, 1141-1147.
    30.
    Kumar, R., Avasthi, D. K., & Kaur, A. (2017). Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sensors and Actuators B: Chemical, 242, 461-468.
    31.
    Zhou, P., Shen, Y., Lu, W., Zhao, S., Li, T., Zhong, X., ... & Zhang, Y. (2020). Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates. Journal of Alloys and Compounds, 828, 154395.
    32.
    David, S. S., Veeralakshmi, S., Sandhya, J., Nehru, S., & Kalaiselvam, S. (2020). Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sensors and Actuators B: Chemical, 320, 128410.
    33.
    Thangamani, G. J., & Pasha, S. K. (2021). Titanium dioxide (TiO2) nanoparticles reinforced polyvinyl formal (PVF) nanocomposites as chemiresistive gas sensor for sulfur dioxide (SO2) monitoring. Chemosphere, 275, 129960.
    34.
    Kumar, S., Pavelyev, V., Mishra, P., & Tripathi, N. (2020). Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for NO2 gas sensing. Bulletin of Materials Science, 43, 1-7.
    35.
    Aranthady, C., Jangid, T., Gupta, K., Mishra, A. K., Kaushik, S. D., Siruguri, V., ... & Sundaram, N. G. (2021). Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sensors and Actuators B: Chemical, 329, 129211.
    36.
    Andersson, M., Holmberg, M., Lundström, I., Lloyd-Spetz, A., Mårtensson, P., Paolesse, R., ... & D’Amico, A. (2001). Development of a ChemFET sensor with molecular films of porphyrins as sensitive layer. Sensors and Actuators B: Chemical, 77(1-2), 567-571.
    37.
    Di Natale, C., Buchholt, K., Martinelli, E., Paolesse, R., Pomarico, G., D’Amico, A., ... & Spetz, A. L. (2009). Investigation of quartz microbalance and ChemFET transduction of molecular recognition events in a metalloporphyrin film. Sensors and Actuators B: Chemical, 135(2), 560-567.
    38.
    Sherbow, T. J., Kuhl, G. M., Lindquist, G. A., Levine, J. D., Pluth, M. D., Johnson, D. W., & Fontenot, S. A. (2021). Hydrosulfide-selective ChemFETs for aqueous H2S/HS− measurement. Sensing and Bio-Sensing Research, 31, 100394.
    39.
    Rushi, A. D., Datta, K. P., Ghosh, P., Mulchandani, A., & Shirsat, M. D. (2018). Exercising substituents in porphyrins for real time selective sensing of volatile organic compounds. Sensors and Actuators B: Chemical, 257, 389-397.
    40.
    Huila, M. F., Parussulo, A. L., Armas, L. E., Peres, H. E., Seabra, A. C., Ramirez-Fernandez, F. J., ... & Toma, H. E. (2017). Laser patterning a chem-FET like device on a V2O5 xerogel film. IEEE Sensors Journal, 18(4), 1358-1363.
    41.
    Yin, H., Mu, X., Li, H., Liu, X., & Mason, A. J. (2018). CMOS monolithic electrochemical gas sensor microsystem using room temperature ionic liquid. IEEE sensors journal, 18(19), 7899-7906.
    42.
    Kaiser, A., Ceja, E. T., Huber, F., Herr, U., & Thonke, K. (2020, November). Highly sensitive H2S sensing with gold and platinum surface-modified ZnO nanowire ChemFETs. In Proceedings (Vol. 60, No. 1, p. 7). MDPI.
    43.
    Kaiser, A., Torres, E., Mauritz, T., Liu, Y., Huber, F., Herr, U., & Thonke, K. (2020, May). Hydrogen Sulfide Detection for Medical Breath Analysis with Surface Functionalized ZnO Nanowires. In Electrochemical Society Meeting Abstracts 237 (No. 28, pp. 2186-2186). The Electrochemical Society, Inc..
    44.
    Ingle, N., Mane, S., Sayyad, P., Bodkhe, G., AL-Gahouari, T., Mahadik, M., ... & Shirsat, M. D. (2020). Sulfur dioxide (SO2) detection using composite of nickel benzene carboxylic (Ni3BTC2) and OH-functionalized single walled carbon nanotubes (OH-SWNTs). Frontiers in Materials, 7, 93.
    45.
    Tsai, Y. S., Lin, X., Wu, Y. S., Chen, H., & Han, J. (2021). Dual UV light and CO gas sensing properties of ZnO/ZnS hybrid nanocomposite. IEEE Sensors Journal, 21(9), 11040-11045.
    46.
    Khajavizadeh, L., Spetz, A. L., & Andersson, M. (2021). CO detection investigation at high temperature by SiC MISFET metal/oxide gas sensors. Multidisciplinary Digital Publishing Institute Proceedings, 56(1), 41.
    47.
    Mahmood, M. H., & Maleque, M. A. (2021). Effective parameter of Nano-CuO coating on CO gas-sensing performance and heat transfer efficiency. Arabian Journal for Science and Engineering, 46, 6557-6566.
    48.
    Simion, C. E., Ghica, C., Mihalcea, C. G., Ghica, D., Mercioniu, I., Somacescu, S., ... & Stanoiu, A. (2021). Insights about CO Gas-Sensing Mechanism with NiO-Based Gas Sensors—The Influence of Humidity. Chemosensors, 9(9), 244.
    49.
    Bonaccorsi, L., Malara, A., Donato, A., Donato, N., Leonardi, S. G., & Neri, G. (2019). Effects of UV irradiation on the sensing properties of In2O3 for CO detection at low temperature. Micromachines, 10(5), 338.
    50.
    Addabbo, T., Bertocci, F., Fort, A., Gregorkiewitz, M., Mugnaini, M., Spinicci, R., & Vignoli, V. (2017). Gas sensing properties of YMnO3 based materials for the detection of NOx and CO. Sensors and Actuators B: Chemical, 244, 1054-1070.
    51.
    Alshammari, A. S., Alenezi, M. R., Lai, K. T., & Silva, S. R. P. (2017). Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Materials Letters, 189, 299-302.
    52.
    Zahedi, A., & Rahbarpour, S. (2021). Modeling and comparing gas sensing properties of CNT and CNT decorated with zinc oxide. IEEE Transactions on Nanotechnology, 20, 292-302.
    53.
    Drera, G., Freddi, S., Emelianov, A. V., Bobrinetskiy, I. I., Chiesa, M., Zanotti, M., ... & Sangaletti, L. (2021). Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC advances, 11(48), 30270-30282.
    54.
    Iordache, S. M., Ionete, E. I., Iordache, A. M., Tanasa, E., Stamatin, I., & Grigorescu, C. E. A. (2021). Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing-Application as gas sensor. International Journal of Hydrogen Energy, 46(18), 11015-11024.
    55.
    Ma, D., Su, Y., Tian, T., Yin, H., Huo, T., Shao, F., ... & Zhang, Y. (2020). Highly sensitive room-temperature NO2 gas sensors based on three-dimensional multiwalled carbon nanotube networks on SiO2 nanospheres. ACS Sustainable Chemistry & Engineering, 8(37), 13915-13923.
    56.
    Shooshtari, M., Salehi, A., & Vollebregt, S. (2020). Effect of humidity on gas sensing performance of carbon nanotube gas sensors operated at room temperature. IEEE Sensors Journal, 21(5), 5763-5770.
    57.
    Lee, K., Park, J., Jung, S. I., Hajra, S., & Kim, H. J. (2021). Direct integration of carbon nanotubes on a suspended Pt microheater for hydrogen gas sensing. Journal of Materials Science: Materials in Electronics, 32, 19626-19634.
    58.
    Adrian, A. R., Cerda, D., Fernández-Izquierdo, L., Segura, R. A., García-Merino, J. A., & Hevia, S. A. (2021). Tunable low crystallinity carbon nanotubes/silicon Schottky junction arrays and their potential application for gas sensing. Nanomaterials, 11(11), 3040.
    59.
    Farea, M. A., Mohammed, H. Y., Sayyad, P. W., Ingle, N. N., Al Gahouari, T., Mahadik, M. M., ... & Shirsat, M. D. (2021). Carbon monoxide sensor based on polypyrrole–graphene oxide composite: A cost-effective approach. Applied Physics A, 127(9), 681.
    60.
    Sayyad, P. W., Ingle, N. N., Al-Gahouari, T., Mahadik, M. M., Bodkhe, G. A., Shirsat, S. M., & Shirsat, M. D. (2020). Sensitive and selective detection of Cu2+ and Pb2+ ions using Field Effect Transistor (FET) based on L-Cysteine anchored PEDOT: PSS/rGO composite. Chemical Physics Letters, 761, 138056.
    61.
    Mohammed, H. Y., Farea, M. A., Sayyad, P. W., Ingle, N. N., Al-Gahouari, T., Mahadik, M. M., ... & Shirsat, M. D. (2022). Selective and sensitive chemiresistive sensors based on polyaniline/graphene oxide nanocomposite: A cost-effective approach. Journal of Science: Advanced Materials and Devices, 7(1), 100391.
    62.
    Sayyad, P. W., Ansari, T. R., Ingle, N. N., Al-Gahouari, T., Bodkhe, G. A., Mahadik, M. M., ... & Shirsat, M. D. (2021). L-Cysteine peptide-functionalized PEDOT-PSS/rGO nanocomposite for selective electrochemical detection of lead Pb (II) ions. Applied Physics A, 127(5), 381.
    63.
    Sayyad, P. W., Ingle, N. N., Al-Gahouari, T., Mahadik, M. M., Bodkhe, G. A., Shirsat, S. M., & Shirsat, M. D. (2021). Selective Hg 2+ sensor: rGO-blended PEDOT: PSS conducting polymer OFET. Applied Physics A, 127, 1-10.
    64.
    Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
    65.
    Alkhouzaam, A., Qiblawey, H., Khraisheh, M., Atieh, M., & Al-Ghouti, M. (2020). Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceramics International, 46(15), 23997-24007.
    66.
    Alam, S. N., Sharma, N., & Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6(1), 1-18.
    67.
    Surekha, G., Krishnaiah, K. V., Ravi, N., & Suvarna, R. P. (2020, March). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. In Journal of Physics: Conference Series (Vol. 1495, No. 1, p. 012012). IOP Publishing.
    68.
    Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., & Voon, C. H. (2017). Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering, 184, 469-477.
    69.
    Zhang, Y., Yao, Y., Sendeku, M. G., Yin, L., Zhan, X., Wang, F., ... & He, J. (2019). Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Advanced materials, 31(41), 1901694.
    70.
    Deng, B., Liu, Z., & Peng, H. (2019). Toward mass production of CVD graphene films. Advanced Materials, 31(9), 1800996.
    71.
    Chen, Z., Qi, Y., Chen, X., Zhang, Y., & Liu, Z. (2019). Direct CVD growth of graphene on traditional glass: methods and mechanisms. Advanced Materials, 31(9), 1803639.
    72.
    Alzate-Carvajal, N., & Luican-Mayer, A. (2020). Functionalized graphene surfaces for selective gas sensing. ACS omega, 5(34), 21320-21329.
    73.
    Zheng, J., Hao, J., Ling, F., Jing, H., Chen, Y., Zhou, T., ... & Zhou, M. (2018). Two-dimensional Au-1, 3, 5 triethynylbenzene organometallic lattice: Structure, half-metallicity, and gas sensing. The Journal of Chemical Physics, 149(2).
    74.
    Szafraniak, B., Fuśnik, Ł., Xu, J., Gao, F., Brudnik, A., & Rydosz, A. (2021). Semiconducting metal oxides: SrTiO3, BaTiO3 and BaSrTiO3 in gas-sensing applications: A review. Coatings, 11(2), 185.
    75.
    Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., ... & Fu, Y. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 6(3), 470-506.
    76.
    Wong, Y. C., Ang, B. C., Haseeb, A. S. M. A., Baharuddin, A. A., & Wong, Y. H. (2020). Conducting polymers as chemiresistive gas sensing materials: A review. Journal of the Electrochemical Society, 167(3), 037503.
    77.
    Baratto, C., Comini, E., Faglia, G., Sberveglieri, G., Zha, M., & Zappettini, A. (2005). Metal oxide nanocrystals for gas sensing. Sensors and Actuators B: Chemical, 109(1), 2-6.
    78.
    Ji, H., Zeng, W., & Li, Y. (2019). Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale, 11(47), 22664-22684.
    79.
    Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal oxide gas sensors: sensitivity and influencing factors. sensors, 10(3), 2088-2106.
    80.
    Ha, N. H., Thinh, D. D., Huong, N. T., Phuong, N. H., Thach, P. D., & Hong, H. S. (2018). Fast response of carbon monoxide gas sensors using a highly porous network of ZnO nanoparticles decorated on 3D reduced graphene oxide. Applied Surface Science, 434, 1048-1054.
    81.
    Rani, S., Kumar, M., Garg, R., Sharma, S., & Kumar, D. (2016). Amide functionalized graphene oxide thin films for hydrogen sulfide gas sensing applications. IEEE Sensors Journal, 16(9), 2929-2934.
    82.
    Patil, R. P., More, P. V., Jain, G. H., Khanna, P. K., & Gaikwad, V. B. (2017). BaTiO3 nanostructures for H2S gas sensor: Influence of band-gap, size and shape on sensing mechanism. Vacuum, 146, 455-461.
    83.
    Zhou, B., Liang, L. M., & Yao, J. (2014). Effects of isomorphous substitution of a coordination polymer on the properties and its application in electrochemical sensing. Journal of Solid State Chemistry, 215, 109-113.
    84.
    Zhou, W., Wu, Y. P., Zhao, J., Dong, W. W., Qiao, X. Q., Hou, D. F., ... & Li, D. S. (2017). Efficient gas-sensing for formaldehyde with 3D hierarchical Co3O4 derived from Co5-based MOF microcrystals. Inorganic chemistry, 56(22), 14111-14117.
    85.
    Rasheed, T., Nabeel, F., Adeel, M., Rizwan, K., Bilal, M., & Iqbal, H. M. (2019). Carbon nanotubes-based cues: A pathway to future sensing and detection of hazardous pollutants. Journal of Molecular Liquids, 292, 111425.
    86.
    Gupta, H., Singh, J., Dutt, R. N., Ojha, S., Kar, S., Kumar, R., ... & Singh, F. (2019). Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation. Physical Chemistry Chemical Physics, 21(27), 15019-15029.
    87.
    Li, X., Wang, J., Liu, X., Liu, L., Cha, D., Zheng, X., ... & Han, Y. (2019). Direct imaging of tunable crystal surface structures of MOF MIL-101 using high-resolution electron microscopy. Journal of the American Chemical Society, 141(30), 12021-12028.
    88.
    Zhang, S. X., Liu, J., Zeng, J., Hu, P. P., Maaz, K., Xu, L. J., ... & Liu, L. (2019). Electronic transport in MoSe2 FETs modified by latent tracks created by swift heavy ion irradiation. Journal of Physics D: Applied Physics, 52(12), 125102.
    89.
    Iwasawa, S., Tsuboi, T., Nakano, M., Hirata, A., Yoshioka, N., Suzuki, S., ... & Omae, K. (2019). Effects of Sulfur Dioxide on Fractional Exhaled Nitric Oxide Concentration in the Child Residents of Miyakejima Island. Asian Journal of Atmospheric Environment (AJAE), 13(2).
    90.
    Su, P. G., & Liao, Z. H. (2019). Fabrication of a flexible single-yarn NH3 gas sensor by layer-by-layer self-assembly of graphene oxide. Materials Chemistry and Physics, 224, 349-356.
    91.
    Chaitra, U., Ali, A. M., Viegas, A. E., Kekuda, D., & Rao, K. M. (2019). Growth and characterization of undoped and aluminium doped zinc oxide thin films for SO2 gas sensing below threshold value limit. Applied Surface Science, 496, 143724.
    92.
    Zhou, W. D., Dastan, D., Li, J., Yin, X. T., & Wang, Q. (2020). Discriminable sensing response behavior to homogeneous gases based on n-ZnO/p-NiO composites. Nanomaterials, 10(4), 785.
    93.
    Souza, B. E., Donà, L., Titov, K., Bruzzese, P., Zeng, Z., Zhang, Y., ... & Tan, J. C. (2020). Elucidating the drug release from metal–organic framework nanocomposites via in situ synchrotron microspectroscopy and theoretical modeling. ACS applied materials & interfaces, 12(4), 5147-5156.
    94.
    Baskaran, S. (2010). Structure and regulation of yeast glycogen synthase (Doctoral dissertation).
    95.
    Patil, M. A., Ganbavle, V. V., Rajpure, K. Y., Deshmukh, H. P., & Mujawar, S. H. (2020). Fast response and highly selective nitrogen dioxide gas sensor based on Zinc Stannate thin films. Materials Science for Energy Technologies, 3, 36-42.
    96.
    Obot, I. B., Onyeachu, I. B., Umoren, S. A., Quraishi, M. A., Sorour, A. A., Chen, T., ... & Wang, Q. (2020). High temperature sweet corrosion and inhibition in the oil and gas industry: Progress, challenges and future perspectives. Journal of Petroleum Science and Engineering, 185, 106469.
    97.
    Rashti, A., Lu, X., Dobson, A., Hassani, E., Feyzbar-Khalkhali-Nejad, F., He, K., & Oh, T. S. (2021). Tuning MOF-derived Co3O4/NiCo2O4 nanostructures for high-performance energy storage. ACS Applied Energy Materials, 4(2), 1537-1547.
    98.
    Aranthady, C., Jangid, T., Gupta, K., Mishra, A. K., Kaushik, S. D., Siruguri, V., ... & Sundaram, N. G. (2021). Selective SO2 detection at low concentration by Ca substituted LaFeO3 chemiresistive gas sensor: a comparative study of LaFeO3 pellet vs thin film. Sensors and Actuators B: Chemical, 329, 129211.
    99.
    Sharma, A., Gupta, G., & Paul, J. (2021). A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing. Carbon Letters, 31, 339-370.
    100.
    Mi, Q., Zhang, D., Zhang, X., & Wang, D. (2021). Highly sensitive ammonia gas sensor based on metal-organic frameworks-derived CoSe2@ nitrogen-doped amorphous carbon decorated with multi-walled carbon nanotubes. Journal of Alloys and Compounds, 860, 158252.
    101.
    Dinari, M., & Jamshidian, F. (2021). Preparation of MIL-101-NH2 MOF/triazine based covalent organic framework hybrid and its application in acid blue 9 removals. Polymer, 215, 123383.
    102.
    Li, Z., Yao, Z., Haidry, A. A., Plecenik, T., Xie, L., Sun, L., & Fatima, Q. (2018). Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy, 43(45), 21114-21132.
    103.
    Mohamedkhair, A. K., Drmosh, Q. A., & Yamani, Z. H. (2019). Silver nanoparticle-decorated tin oxide thin films: synthesis, characterization, and hydrogen gas sensing. Frontiers in materials, 6, 188.
    104.
    Mahajan, S., & Jagtap, S. (2020). Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Applied materials today, 18, 100483.
    105.
    Jusman, Y., Ng, S. C., & Abu Osman, N. A. (2014). Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. The Scientific World Journal, 2014.
    106.
    Arul, C., Moulaee, K., Donato, N., Iannazzo, D., Lavanya, N., Neri, G., & Sekar, C. (2021). Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sensors and Actuators B:
    Chemical, 329, 129053.
    107.
    Kaiser, A., Ceja, E. T., Huber, F., Herr, U., & Thonke, K. (2020, November). Highly sensitive H2S sensing with gold and platinum surface-modified ZnO nanowire ChemFETs. In Proceedings (Vol. 60, No. 1, p. 7). MDPI.
    108.
    Mahadik, M., Patil, H., Bodkhe, G., Ingle, N., Sayyad, P., Al-Gahaouri, T., ... & Shirsat, M. (2020). EDTA modified PANI/GO composite based detection of Hg (II) ions. Frontiers in Materials, 7, 81.
    109.
    Pletikapić, G., & Ivošević DeNardis, N. (2017). Application of surface analytical methods for hazardous situation in the Adriatic Sea: monitoring of organic matter dynamics and oil pollution. Natural Hazards and Earth System Sciences, 17(1), 31-44.
    110.
    Ingle, N., Sayyad, P., Bodkhe, G., Mahadik, M., AL-Gahouari, T., Shirsat, S., & Shirsat, M. D. (2020). ChemFET Sensor: Nanorods of nickel-substituted Metal–Organic framework for detection of SO 2. Applied Physics A, 126, 1-9.
    111.
    Liu, H., Shi, Y., & Wang, T. (2020). Design of a six-gas NDIR gas sensor using an integrated optical gas chamber. Optics express, 28(8), 11451-11462.
    112.
    Hänsel, A., & Heck, M. J. (2020). Opportunities for photonic integrated circuits in optical gas sensors. Journal of Physics: Photonics, 2(1), 012002.
    113.
    Hodgkinson, J., & Tatam, R. P. (2012). Optical gas sensing: a review. Measurement science and technology, 24(1), 012004.
    114.
    Li, J., Yan, H., Dang, H., & Meng, F. (2021). Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Optics & Laser Technology, 135, 106658.
    115.
    Sayyad, P. W., Ingle, N. N., Al-Gahouari, T., Mahadik, M. M., Bodkhe, G. A., Shirsat, S. M., & Shirsat, M. D. (2020). Sensitive and selective detection of Cu2+ and Pb2+ ions using Field Effect Transistor (FET) based on L-Cysteine anchored PEDOT: PSS/rGO composite. Chemical Physics Letters, 761, 138056.
    116.
    Deng, Y. (2023). Sensing mechanism and evaluation criteria of semiconducting metal oxides gas sensors. In Semiconducting Metal Oxides for Gas Sensing (pp. 33-74). Singapore: Springer Nature Singapore.
    117.
    Yang, A., Wang, D., Lan, T., Chu, J., Li, W., Pan, J., ... & Rong, M. (2020). Single ultrathin WO3 nanowire as a superior gas sensor for SO2 and H2S: Selective adsorption and distinct IV response. Materials Chemistry and Physics, 240, 122165.
    118.
    Fu, Y., Li, J., & Xu, H. (2020). SnO2 recycled from tin slime for enhanced SO2 sensing properties by NiO surface decoration. Materials Science in Semiconductor Processing, 114, 105073.
    119.
    Patil, H. K., Deshmukh, M. A., Bodkhe, G. A., Asokan, K., & Shirsat, M. D. (2018, May). Spectroscopic investigations upon 100MeV oxygen ions irradiation on polyaniline and poly-o-toluidine. In AIP Conference Proceedings (Vol. 1953, No. 1). AIP Publishing.
    120.
    Ingle, N., Sayyad, P., Deshmukh, M., Bodkhe, G., Mahadik, M., Al-Gahouari, T., ... & Shirsat, M. D. (2021). A chemiresistive gas sensor for sensitive detection of SO 2 employing Ni-MOF modified–OH-SWNTs and–OH-MWNTs. Applied Physics A, 127, 1-10.
    121.
    Leng, Y. (2013). Materials characterization: introduction to microscopic and spectroscopic methods. John Wiley & Sons.
    122.
    Farmanzadeh, D., & Ardehjani, N. A. (2018). Adsorption of O3, SO2 and NO2 molecules on the surface of pure and Fe-doped silicon carbide nanosheets: a computational study. Applied Surface Science, 462, 685-692.
    123.
    Xu, H., Li, J., Fu, Y., Li, P., Luo, W., & Tian, Y. (2020). Ag/Ag2S nanoparticle-induced sensitization of recovered sulfur-doped SnO2 nanoparticles for SO2 detection. ACS Applied Nano Materials, 3(8), 8075-8087.
    124.
    Yang, Q., Wang, B., Chen, Y., Xie, Y., & Li, J. (2019). An anionic In (III)-based metal-organic framework with Lewis basic sites for the selective adsorption and separation of organic cationic dyes. Chinese Chemical Letters, 30(1), 234-238.
    125.
    Ingle, N., Mane, S., Sayyad, P., Bodkhe, G., AL-Gahouari, T., Mahadik, M., ... & Shirsat, M. D. (2020). Sulfur dioxide (SO2) detection using composite of nickel benzene carboxylic (Ni3BTC2) and OH-functionalized single walled carbon nanotubes (OH-SWNTs). Frontiers in Materials, 7, 93.
    126.
    Cao, N., & Zhang, Y. (2015). Study of reduced graphene oxide preparation by Hummers’ method and related characterization. Journal of Nanomaterials, 2015, 2-2.
    127.
    Song, K., Tang, C., Zou, Z., & Wu, Y. (2020). Modification of porous lignin with metalloporphyrin as an efficient catalyst for the synthesis of cyclic carbonates. Transition Metal Chemistry, 45, 111-119.
    128.
    Rezaeifard, A., & Jafarpour, M. (2014). The catalytic efficiency of Fe-porphyrins supported on multi-walled carbon nanotubes in the heterogeneous oxidation of hydrocarbons and sulfides in water. Catalysis Science & Technology, 4(7), 1960-1969.
    129.
    Crisanti, M. A., Spiro, T. G., English, D. R., Hendrickson, D. N., & Suslick, K. S. (1984). Resonance Raman spectra of high oxidation state iron porphyrin dimers. Inorganic Chemistry, 23(24), 3897-3901.
    130.
    Zakavi, S., Mojarrad, A. G., & Yazdely, T. M. (2012). Facile purification of meso-tetra (pyridyl) porphyrins and detection of unreacted porphyrin upon metallation of meso-tetra (aryl) porphyrins. Macroheterocycles, 5(1), 67.
    131.
    Salker, A. V., & Gokakakar, S. D. (2009). Solar assisted photo-catalytic degradation of Amido Black 10B over cobalt, nickel and zinc metalloporphyrins.
    132.
    Panda, D., Nandi, A., Datta, S. K., Saha, H., & Majumdar, S. (2016). Selective detection of carbon monoxide (CO) gas by reduced graphene oxide (rGO) at room temperature. RSC advances, 6(53), 47337-47348.
    133.
    Debataraja, A., Muchtar, A. R., Septiani, N. L. W., Yuliarto, B., & Sunendar, B. (2017). High performance carbon monoxide sensor based on nano composite of SnO 2-graphene. IEEE Sensors Journal, 17(24), 8297-8305.
    134.
    Singh, G., Choudhary, A., Haranath, D., Joshi, A. G., Singh, N., Singh, S., & Pasricha, R. (2012). ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon, 50(2), 385-394.
    135.
    Joshi, R. K., Gomez, H., Alvi, F., & Kumar, A. (2010). Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions. The Journal of Physical Chemistry C, 114(14), 6610-6613.
    136.
    Estananto, Septiani, N. L. W., Iqbal, M., Suyatman, Nuruddin, A., & Yuliarto, B. (2021). Nanocomposite of graphene and WO3 nanowires for carbon monoxide sensors. Nanocomposites, 7(1), 225-236.
    137.
    Utari, L., Septiani, N. L. W., Nur, L. O., Wasisto, H. S., & Yuliarto, B. (2020). Wearable carbon monoxide sensors based on hybrid graphene/ZnO nanocomposites. IEEE Access, 8, 49169-49179.
    138.
    Naganaboina, V. R., & Singh, S. G. (2021). Graphene-CeO2 based flexible gas sensor: monitoring of low ppm CO gas with high selectivity at room temperature. Applied Surface Science, 563, 150272.
    139.
    Zhong, Y., Li, M., Tan, R., Xiao, X., Hu, Y., & Li, G. (2021). Co (Ⅲ) doped-CoFe layered double hydroxide growth with graphene oxide as cataluminescence catalyst for detection of carbon monoxide. Sensors and Actuators B: Chemical, 347, 130600.

    QR CODE