簡易檢索 / 詳目顯示

研究生: 黃昕皓
Xin-Hao Huang
論文名稱: 新型可交聯非富勒烯材料的合成與鈣鈦礦光感測器的應用
Synthesis and Application of Novel Cross-linkable Non-fullerene Material in Perovskite Photodetectors
指導教授: 張志宇
Chih-Yu Chang
口試委員: 衛子健
Tzu-Chien Wei
徐旭政
Hsu-Cheng Hsu
陳良益
Liang‑Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 鈣鈦礦光感測器非富勒烯材料可交聯材料
外文關鍵詞: perovskite photodetectors, non-fullerene materials, crosslinkable materials
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近年來光感測器的發展中,鈣鈦礦以其高光電轉換效率、寬廣的光譜響應和可溶液態製程等優勢受到廣泛矚目。然而,現今鈣鈦礦光感測器仍面臨穩定度的挑戰,尤其易受環境因素如光、熱及水氣的影響,使鈣鈦礦加速劣化並讓碘離子在元件中擴散而降低其穩定度,這構成實際商業應用的阻礙。鑑於此,本研究致力於找尋有效的解決策略。非富勒烯材料因其光熱穩定性、可調變的能階與優異的光電性能等優勢而受到廣泛關注,特別是我們的研究團隊已證實非富勒烯共軛小分子2,6-dibromoN,N'-bis(2-ethylhexyl)-1,8:4,5-naphthalenetetracarboxdiimide (NDI-EH-Br2)能有效抑制鈣鈦礦劣化時所產生之碘離子的擴散,顯著改善鈣鈦礦光感測器的穩定度。交聯材料的應用被廣泛報導可提升鈣鈦礦光電元件的穩定度,藉由交聯結構形成保護層以抵擋外界環境因素的影響。基於以上論點,啟發我們設計並合成全新且從未被探討過的可交聯非富勒烯材料4,9-dibromo-2,7-bis(4-vinylbenzyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (cross-link NDI, CLNDI),該材料在加熱下通過分子末端的乙烯官能基實現熱交聯,再結合偶氮二異丁腈(2,2-azobisisobutyronitrile,AIBN)熱引發劑於低溫下成功交聯並覆蓋在鈣鈦礦上形成保護層,同時該材料承繼了NDI-EH-Br2的結構特性具有捕捉碘離子的能力,因此改善鈣鈦礦光感測器的穩定度。藉由CLNDI交聯後提升的溶劑耐受性我們探討了其厚度效應和改善膜面覆蓋率的問題。CLNDI於鈣鈦礦光感測器的應用中,元件初始性能響應度及探測度分別達到0.3 A/W及2.4 x 1012 Jones,在大氣下放置534小時後,響應度與探測度仍保有初始值的76.7%與13.2%,有效提升穩定度。本研究最後也探討了AIBN可能對CLNDI產生的負面影響,為未來鈣鈦礦光感測器的研究提供了重要的指引,期望後續能夠利用此材料開發出高性能且更加穩定的鈣鈦礦光感測器。


    In recent years, the development of photodetectors has seen significant attention directed towards perovskite materials. This is largely due to their superior properties, such as high photovoltaic conversion efficiency, broad spectral response, and solution-processability. However, the stability of perovskite photodetectors remains a challenge as they are particularly susceptible to environmental factors such as light, heat, and moisture. These conditions can accelerate the degradation of perovskites and lead to the diffusion of iodide ions within the device, declining its stability and hindering its commercial application. In view of this, our research aims to find effective resolution strategies. Non-fullerene materials have garnered significant interest due to their photothermal stability, tunable energy levels, and outstanding optoelectronic performance. In particular, our research team has proven that the non-fullerene NDI small molecule, 2,6-dibromoN,N'-bis(2-ethylhexyl)-1,8:4,5-naphthalenetetracarboxdiimide (NDI-EH-Br2), can effectively inhibit the diffusion of iodide ions generated during perovskite degradation, significantly improving the stability of perovskite photodetectors. The application of crosslinking materials, known for enhancing the stability of perovskite optoelectronic devices by forming a protective layer through crosslinked structures, has been extensively reported. Inspired by this, we designed and synthesized a novel crosslinkable non-fullerene material, 4,9-dibromo-2,7-bis(4-vinylbenzyl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H) -tetraone (cross-link NDI, CLNDI). This material can achieve thermal crosslinking through the vinyl functional groups at the molecular terminus under heating, successfully forming a protective layer over the perovskite with the thermal initiator, 2,2-azobisisobutyronitrile (AIBN), at low temperatures. In addition, CLNDI inherits the structural characteristics of NDI-EH-Br2 and is capable of capturing iodide ions, thereby improving the stability of perovskite photodetectors. By increasing the solvent tolerance of CLNDI after crosslinking, we investigated its thickness effect and the issue of improving film coverage. In the application of CLNDI in perovskite photodetectors, the initial performance of the device achieved a responsivity and detectivity of 0.3 A/W and 2.4 x 1012 Jones, respectively. after placement under atmospheric conditions for 534 hours, the responsivity and detectivity maintained 76.7% and 13.2% of their initial values, respectively, effectively enhancing stability. Lastly, our study explores the potential adverse impact of AIBN on CLNDI, providing important guidance for future research on perovskite photodetectors. It is anticipated that this material can be used in the future to develop high-performance and more stable perovskite photodetectors.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 4 第二章 文獻回顧 5 2.1 鈣鈦礦簡介 5 2.1.1 鈣鈦礦發展歷史 5 2.1.2 鈣鈦礦結構和光電特性 5 2.2評估光感測器之性能 8 2.2.1 暗電流(dark current, Jd) 9 2.2.2 響應度(responsivity, R) 9 2.2.3 探測度(detectivity, D) 9 2.2.4 線性動態範圍(linear dynamic range, LDR) 10 2.2.5 噪聲等效功率(noise equivalent power, NEP) 10 2.3 鈣鈦礦光感測器 11 2.3.1 鈣鈦礦光感測器發展歷史 11 2.3.2 鈣鈦礦光感測器的工作機制 17 2.4 陰極界面層 19 2.5非富勒烯材料 NDI/PDIN 做為陰極界面層之鈣鈦礦光感測器 22 2.6 交聯材料應用於鈣鈦礦光電元件 26 2.7 NDI的合成 32 第三章 實驗設計與步驟 36 3.1 實驗設計 36 3.2 CLNDI 的合成 38 3.2.1合成材料準備 38 3.2.2合成步驟 38 3.3 元件製備 39 3.3.1 材料準備 39 3.3.2 清洗基板流程 39 3.3.3 鈣鈦礦前驅物溶液製備 39 3.3.4 光感測器元件製備 39 3.3.5 材料分析與光感測元件量測之方法和儀器 41 第四章 結果與討論 42 4.1 CLNDI反應機制 42 4.2 CLNDI反應條件探討 44 4.3 CLNDI的交聯 46 4.3.1 CLNDI交聯反應機制探討 46 4.3.2 CLNDI的熱分析 50 4.3.3 CLNDI的UV-vis分析 53 4.3.4 CLNDI 的FTIR分析 56 4.4 鈣鈦礦主動層分析 58 4.4.1 表面結構與形貌(AFM、SEM) 58 4.4.2 光學特性分析( UV、PL) 59 4.4.3 鈣鈦礦晶體結構分析(XRD) 61 4.5 CLNDI應用於鈣鈦礦光感測器 61 4.5.1 CLNDI /PDIN薄膜之表面形貌(AFM、SEM) 62 4.5.2 CLNDI光電特性及能階分析 64 4.5.3 CLNDI應用於鈣鈦礦光感測器元件初始性能 68 4.5.4 CLNDI應用於鈣鈦礦光感測器元件穩定度 74 4.5.5 探討NDI/PDIN鈣鈦礦光感測器元件穩定度提升的原因 84 4.5.6 比較NDI-EH-Br2與CLNDI覆蓋在鈣鈦礦元件上的穩定度 86 4.5.7陰極界面層為CLNDI/PDIN之光感測性能與熱穩定度 89 第五章 結論 93 附錄 94 參考文獻 95

    1.A. Lanzolla and M. Spadavecchia, Sensors (Basel), 2021, 21, 1172.
    2.M. U. Bukhari, A. Khan, K. Q. Maqbool, A. Arshad, K. Riaz and A. Bermak, Energy Reports, 2022, 8, 1687-1695.
    3.T. Quirin, C. Vergne, C. Féry, P. Badertscher, H. Nicolas, D. Mannhart, S. Osswald, M. Kuhne, C. Sticherling and M. Madec, 2022, 43, 101122.
    4.Y. Liang, C. Z. Zhao, H. Yuan, Y. Chen, W. Zhang, J. Q. Huang, D. Yu, Y. Liu, M. M. Titirici and Y. L. Chueh, InfoMat, 2019, 1, 6-32.
    5.A. Chetia, J. Bera, A. Betal and S. Sahu, Materials Today Communications, 2022, 30, 103224.
    6.M. K. Kim, Z. Munkhsaikhan, S. G. Han, S. M. Park, H. Jin, J. Cha, S. J. Yang, J. Seo, H. S. Lee and C.-J. Choi, Journal of Materials Chemistry C, 2022, 10, 11401-11411.
    7.G. Li, Y. Wang, L. Huang and W. Sun, ACS Applied Electronic Materials, 2022, 4, 1485-1505.
    8.Y. Liu, Z. Ji, G. Cen, H. Sun, H. Wang, C. Zhao, Z. L. Wang and W. Mai, Light: Science & Applications, 2023, 12, 43.
    9.S. Mitro, M. Saiduzzaman, T. I. Asif and K. M. Hossain, Journal of Materials Science: Materials in Electronics, 2022, 33, 13860-13875.
    10.S. A. Khan, N. Z. Khan, M. Sohail, M. Runowski, X. Xu and S. Agathopoulos, Materials Today Physics, 2023, 34, 101079.
    11.C. Li, Y. Ma, Y. Xiao, L. Shen and L. Ding, InfoMat, 2020, 2, 1247-1256.
    12.Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga and Y. Qi, Advanced Materials Interfaces, 2015, 2, 1500195.
    13.金怡伶,利用非富勒烯材料實現高性能且長期穩定的鈣鈦礦光感測器,111,國立臺灣科技大學,碩士論文,台北。
    14.B. Han, S. Yuan, B. Cai, J. Song, W. Liu, F. Zhang, T. Fang, C. Wei and H. Zeng, Advanced Functional Materials, 2021, 31, 2011003.
    15.E. A. Katz, Helvetica Chimica Acta, 2020, 103, e2000061.
    16.M. K. Rao, D. Sangeetha, M. Selvakumar, Y. Sudhakar and M. Mahesha, Solar Energy, 2021, 218, 469-491.
    17.K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang and C. Yan, Nature, 2018, 562, 245-248.
    18.T. Matsushima, S. Hwang, A. S. Sandanayaka, C. Qin, S. Terakawa, T. Fujihara, M. Yahiro and C. Adachi, Advanced Materials, 2016, 28, 10275-10281.
    19.H. Xie, S. Hao, J. Bao, T. J. Slade, G. J. Snyder, C. Wolverton and M. G. Kanatzidis, Journal of the American Chemical Society, 2020, 142, 9553-9563.
    20.W. Ke and M. G. Kanatzidis, Nature communications, 2019, 10, 965.
    21.T.-W. Chen, R. Ramachandran, S.-M. Chen, G. Anushya, S. Divya Rani, V. Mariyappan, P. Elumalai and N. Vasimalai, Nanomaterials, 2021, 11, 1006.
    22.W. Arpavate, K. Roongraung and S. Chuangchote, in Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, 2021, pp. 189-203.
    23.M. Konstantakou and T. Stergiopoulos, Journal of Materials Chemistry A, 2017, 5, 11518-11549.
    24.N.-G. Park, Materials today, 2015, 18, 65-72.
    25.T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee and H. J. Snaith, ACS Nano, 2014, 8, 7147-7155.
    26.M. Baranowski and P. Plochocka, Advanced Energy Materials, 2020, 10, 1903659.
    27.Z. Zheng, S. Wang, Y. Hu, Y. Rong, A. Mei and H. Han, Chemical Science, 2022, 13, 2167-2183.
    28.Z. Muhammad, P. Liu, R. Ahmad, S. Jalali-Asadabadi, C. Franchini and I. Ahmad, AIP Advances, 2022, 12, 025330.
    29.N. Li, L. Song, Y. Jia, Y. Dong, F. Xie, L. Wang, S. Tao and N. Zhao, Advanced Materials, 2020, 32, 1907786.
    30.X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang and Y. Xie, Advanced Functional Materials, 2014, 24, 7373-7380.
    31.X. Xu, C. C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L. Y. Lin and A. K. Y. Jen, Advanced Functional Materials, 2017, 27, 1701053.
    32.X. Zhao and N.-G. Park, Photonics, 2015, 2, 1139-1151.
    33.D. Wu, Y. Xu, H. Zhou, X. Feng, J. Zhang, X. Pan, Z. Gao, R. Wang, G. Ma and L. Tao, InfoMat, 2022, 4, e12320.
    34.D. Wang, W. Xu, L. Min, W. Tian and L. Li, Advanced Materials Interfaces, 2022, 9, 2101766.
    35.T. Li, Q. Li, H. Zhang, H. Zhao, S. Wang, M. Li, X. Tang, X. Ding, Y. Zhang and J. Yao, Journal of Materials Chemistry C, 2022, 10, 6846-6856.
    36.M. Salado, M. Andresini, P. Huang, M. T. Khan, F. Ciriaco, S. Kazim and S. Ahmad, Advanced Functional Materials, 2020, 30, 1910561.
    37.J. Zhu, M. Tang, B. He, K. Shen, W. Zhang, X. Sun, M. Sun, H. Chen, Y. Duan and Q. Tang, Chemical Engineering Journal, 2021, 404, 126548.
    38.E. Aydin, M. De Bastiani and S. De Wolf, Advanced Materials, 2019, 31, 1900428.
    39.V. Murugadoss, D. Y. Kang, W. J. Lee, I. G. Jang and T. Geun Kim, Advanced Composites and Hybrid Materials, 2022, 5, 1385-1395.
    40.G. Xiong, Z. Qin, B. Li, L. Wang, X. Zhang, Z. Zheng, H. Zhu, S. Zhao, J. Gao and B. Li, Journal of Materials Chemistry C, 2021, 9, 2095-2105.
    41.F. Cao, M. Wang and L. Li, Nano Select, 2020, 1, 152-168.
    42.T. Man, W. Lai, C. Zhu, X. Shen, W. Zhang, Q. Bao, J. Chen, Y. Wan, H. Pei and L. Li, Advanced Functional Materials, 2022, 32, 2201799.
    43.K. Wang, C. Liu, P. Du, J. Zheng and X. Gong, Energy & Environmental Science, 2015, 8, 1245-1255.
    44.L. Meng, J. You, T.-F. Guo and Y. Yang, Accounts of chemical research, 2016, 49, 155-165.
    45.S. S. Mali and C. K. Hong, Nanoscale, 2016, 8, 10528-10540.
    46.T. Wu, D. Wang, X. Jiang, X. Ge, F. Guo, T. Ye, S. Gao and Y. Zhang, Advanced Materials Interfaces, 2022, 9, 2200923.
    47.Y. Bai, X. Meng and S. Yang, Advanced Energy Materials, 2018, 8, 1701883.
    48.G.-W. Kim, Y. Choi, H. Choi, J. Min, T. Park and S. Song, Journal of Materials Chemistry A, 2020, 8, 21721-21728.
    49.J. Lee and H. Tüysüz, ChemSusChem, 2021, 14, 2393-2400.
    50.R. Hu, L. Chu, J. Zhang, X. a. Li and W. Huang, Journal of Power Sources, 2017, 361, 259-275.
    51.Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng and Y. Li, Journal of the American Chemical Society, 2015, 137, 15540-15547.
    52.D. Wang, T. Ye and Y. Zhang, Journal of Materials Chemistry A, 2020, 8, 20819-20848.
    53.M. Zheng, Y. Miao, A. A. Syed, C. Chen, X. Yang, L. Ding, H. Li and M. Cheng, Journal of Energy Chemistry, 2021, 56, 374-382.
    54.L. Zhu, W. Gao, F. Wu, L. Li and C. Yang, Journal of Materials Chemistry A, 2018, 6, 18044-18049.
    55.Z. Cheng, C. Gao, J. Song, D. Ding, Y. Chen, J. Wang, D. Zhang, L. Chen, X. Wang and Z. Yang, ACS Applied Materials & Interfaces, 2021, 13, 40778-40787.
    56.H. Liu, Z. Zhang, Z. Su, W. Zuo, Y. Tang, F. Yang, X. Zhang, C. Qin, J. Yang and Z. Li, Advanced Science, 2022, 9, 2105739.
    57.O. A. A. Ali, M. U. Khan, M. A. Asghar, S. F. Mahmoud, S. M. El-Bahy, R. Baby and M. R. S. A. Janjua, Physica B: Condensed Matter, 2023, 652, 414630.
    58.X. Ran, M. A. Ali, Z. Hu, P. Li, Y. Xia, H. Zhang, L. Yang and Y. Chen, The Journal of Physical Chemistry C, 2023, 127, 5114-5124.
    59.A. A. Said, J. Xie and Q. Zhang, Small, 2019, 15, 1900854.
    60.H. Wang, Q. Zhang, J. Zhou, X. Su, G. Xie, N. Tang, N. Zheng, L. Liu and Z. Xie, Advanced Optical Materials, 2022, 10, 2201202.
    61.M. A. Jameel, T. C.-J. Yang, G. J. Wilson, R. A. Evans, A. Gupta and S. J. Langford, Journal of Materials Chemistry A, 2021, 9, 27170-27192.
    62.S. K. Jung, J. H. Heo, D. W. Lee, S. C. Lee, S. H. Lee, W. Yoon, H. Yun, S. H. Im, J. H. Kim and O. P. Kwon, Advanced Functional Materials, 2018, 28, 1800346.
    63.Y. Shi, W. Chen, Z. Wu, Y. Wang, W. Sun, K. Yang, Y. Tang, H. Y. Woo, M. Zhou and A. B. Djurišić, Journal of Materials Chemistry A, 2020, 8, 13754-13762.
    64.M. Zhang and X. Zhan, Advanced Energy Materials, 2019, 9, 1900860.
    65.J. S. Yun, W. J. Choi, S. H. Kim, E. Cho, S. J. Lee, J. H. Lee, J. H. Park and D. S. Ham, Surfaces and Interfaces, 2021, 27, 101546.
    66.X. Jin, L. Li, R. Xu, Q. Liu, L. Ding, Y. Pan, C. Wang, W. Hung, K. Lee and T. Wang, Polymers, 2018, 10, 539.
    67.S. Zhu and J. Peng, Chemistry – A European Journal, 2023, 29, e202203571.
    68.Y. Ikeda, Y. Yasuda, T. Ohashi, H. Yokohama, S. Minoda, H. Kobayashi and T. Honma, Macromolecules, 2015, 48, 462-475.
    69.X. Li, W. Zhang, Y.-C. Wang, W. Zhang, H.-Q. Wang and J. Fang, Nature communications, 2018, 9, 3806.
    70.X. Zhu, H. Dong, J. Chen, J. Xu, Z. Li, F. Yuan, J. Dai, B. Jiao, X. Hou and J. Xi, Advanced Functional Materials, 2022, 32, 2202408.
    71.J. Xi, Y. Wu, W. Chen, Q. Li, J. Li, Y. Shen, H. Chen, G. Xu, H. Yang and Z. Chen, Nano Energy, 2022, 93, 106846.
    72.R. Saraf, H. Fan and V. Maheshwari, npj Flexible Electronics, 2020, 4, 30.
    73.G. Kim, S. An, S.-K. Hyeong, S.-K. Lee, M. Kim and N. Shin, Chemistry of Materials, 2019, 31, 8212-8221.
    74.T. Shi, X. Chen, R. He, H. Huang, X. Yuan, Z. Zhang, J. Wang, P. K. Chu and X.-F. Yu, Advanced Science, 2023, 10, 2302005.
    75.L. He, D. Wang, Y. Zhao, Y. Zhang, W. Wei and L. Shen, Journal of Materials Chemistry C, 2021, 9, 11722-11728.
    76.R. Dong, Y. Fang, J. Chae, J. Dai, Z. Xiao, Q. Dong, Y. Yuan, A. Centrone, X. C. Zeng and J. Huang, Advanced Materials, 2015, 27, 1912-1918.
    77.X. Guo, D. Tu and X. Liu, Journal of Energy Chemistry, 2015, 24, 675-685.
    78.M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor and S. V. Bhosale, Chemical Reviews, 2016, 116, 11685-11796.
    79.X. Guo, F. S. Kim, M. J. Seger, S. A. Jenekhe and M. D. Watson, Chemistry of Materials, 2012, 24, 1434-1442.
    80.H. You, D. Kim, H. H. Cho, C. Lee, S. Chong, N. Y. Ahn, M. Seo, J. Kim, F. S. Kim and B. J. Kim, Advanced Functional Materials, 2018, 28, 1803613.
    81.N. Zhou and A. Facchetti, Materials Today, 2018, 21, 377-390.
    82.J. B. Lee, B. M. Oh, Y.-S. Lee, W. Yoon, H. Yun, D. Kim, J. H. Kim and O.-P. Kwon, Organic Electronics, 2022, 100, 106348.
    83.Z. Yao, Y. Sun and C. Kang, Nano Life, 2016, 6, 1642007.
    84.S. S. Birajdar, S. Naqvi, K. S. More, A. L. Puyad, R. Kumar, S. V. Bhosale and S. V. Bhosale, New Journal of Chemistry, 2021, 45, 1590-1600.
    85.C. Wiberg, M. Busch, L. Evenäs and E. Ahlberg, Electrochimica Acta, 2021, 367, 137480.
    86.S. V. Bhosale, C. H. Jani and S. J. Langford, Chemical Society Reviews, 2008, 37, 331-342.
    87.C. Thalacker, C. Röger and F. Würthner, The Journal of Organic Chemistry, 2006, 71, 8098-8105.
    88.A. Insuasty, S. Maniam and S. J. Langford, Chemistry–A European Journal, 2019, 25, 7058-7073.
    89.M. Nakano, D. Hashizume and K. Takimiya, Molecules, 2016, 21, 981.
    90.Z. Chen, Y. Zheng, H. Yan and A. Facchetti, Journal of the American Chemical Society, 2009, 131, 8-9.
    91.F. Doria, M. di Antonio, M. Benotti, D. Verga and M. Freccero, The Journal of Organic Chemistry, 2009, 74, 8616-8625.
    92.Y. Hu, Y. Qin, X. Gao, F. Zhang, C.-a. Di, Z. Zhao, H. Li and D. Zhu, Organic letters, 2012, 14, 292-295.
    93.A. Weißenstein, V. Grande, C. R. Saha-Möller and F. Würthner, Organic Chemistry Frontiers, 2018, 5, 2641-2651.
    94.E. Khurramov, A. Abdushukurov, D. Buriyeva, E. Berdimurodov and I. Nakhatov, International Journal of Mechanical and Production Engineering Research and Development, 2020, 10, 6001-6016.
    95.D. D. S. Sharley and J. M. Williams, Chemical Communications, 2017, 53, 2020-2023.
    96.A. C. Thompson, H. M. Grimm, A. Gray Bé, K. J. McKnight and J. J. Reczek, Synthetic Communications, 2015, 45, 1127-1136.
    97.F.-Y. Lin and A. D. MacKerell, Jr., The Journal of Physical Chemistry B, 2017, 121, 6813-6821.
    98.I. A. Osman, V. McKee, C. Jelsch and J. F. Gallagher, Symmetry, 2023, 15, 738.
    99.P. Li, G. Chen, Y. Lin, F. Chen, L. Chen, N. Zhang, Y. Cao, R. Ma and X. Liu, Macromolecular Chemistry and Physics, 2020, 221, 1900414.
    100.J. Kost, A. Bleiziffer, D. Rusitov and J. Rühe, Journal of the American Chemical Society, 2021, 143, 10108-10119.
    101.F. Bai, X. Yang and W. Huang, Macromolecules, 2004, 37, 9746-9752.
    102.K. V. Deriabin, M. V. Dobrynin and R. M. Islamova, Dalton Transactions, 2020, 49, 8855-8858.
    103.L. Ning, P. B. Ingabire, N. Gu, P. Du, D. Lv, X. Chen, L. Song, W.-H. Chen and J. Xiong, Journal of Materials Chemistry A, 2022, 10, 3688-3697.
    104.M. Li, R. Sun, J. Chang, J. Dong, Q. Tian, H. Wang, Z. Li, P. Yang, H. Shi and C. Yang, Nature Communications, 2023, 14, 573.
    105.N. Saadatkhah, A. Carillo Garcia, S. Ackermann, P. Leclerc, M. Latifi, S. Samih, G. S. Patience and J. Chaouki, The Canadian Journal of Chemical Engineering, 2020, 98, 34-43.
    106.C.-Y. Hsiow, R. Raja, C.-Y. Wang, Y.-H. Lin, Y.-W. Yang, Y.-J. Hsieh, S.-P. Rwei, W.-Y. Chiu, C.-I. Huang and L. Wang, Physical Chemistry Chemical Physics, 2014, 16, 25111-25120.
    107.J. Wu, Y. Wu, Z. He, Z. Li, H. Huang, Y. Chen and G. Liang, Science China Materials, 2021, 64, 430-439.
    108.L. Wang, F. Zhang, T. Liu, W. Zhang, Y. Li, B. Cai, L. He, Y. Guo, X. Yang and B. Xu, Journal of Energy Chemistry, 2021, 55, 211-218.
    109.R. Tank and D. Gupta, Journal of Porous Materials, 2009, 16, 387-392.
    110.W. Wang, X. Zhang, J. Lin, L. Zhu, E. Zhou, Y. Feng, D. Yuan and Y. Wang, Angewandte Chemie International Edition, 2022, 61, e202214816.
    111.N. Kumari, S. Naqvi and R. Kumar, Journal of Materials Science, 2018, 53, 4046-4055.
    112.S. U. Sharma, Y.-L. Chang, S. V. Chaganti, Y. W. More and J.-T. Lee, ACS Applied Energy Materials, 2022, 5, 7550-7558.
    113.X. Xu, C. Ma, Y.-M. Xie, Y. Cheng, Y. Tian, M. Li, Y. Ma, C.-S. Lee and S.-W. Tsang, Journal of Materials Chemistry A, 2018, 6, 7731-7740.
    114.Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan, Y. Cho, S. Tang, M. Zhang, Y. Yao and C. F. J. Lau, Advanced Science, 2020, 7, 1903368.
    115.Z. Peng, Q. Wei, H. Chen, Y. Liu, F. Wang, X. Jiang, W. Liu, W. Zhou, S. Ling and Z. Ning, Cell Reports Physical Science, 2020, 1, 100224.
    116.N. Zhou, Y. Shen, Y. Zhang, Z. Xu, G. Zheng, L. Li, Q. Chen and H. Zhou, Small, 2017, 13, 1700484.
    117.T.-H. Han, J.-W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. De Marco, S.-J. Lee, S.-H. Bae, Y. Yuan, H. M. Lee, Y. Huang and Y. Yang, Nature Communications, 2019, 10, 520.
    118.S. Naqvi, M. Kumar and R. Kumar, ACS Omega, 2019, 4, 19735-19745.
    119.S. K. M. Nalluri, C. Berdugo, N. Javid, P. W. J. M. Frederix and R. V. Ulijn, Angewandte Chemie International Edition, 2014, 53, 5882-5887.
    120.C. J. I. V. Zeman, S. Kim, F. Zhang and K. S. Schanze, Journal of the American Chemical Society, 2020, 142, 2204-2207.
    121.J. Zhang, J. Liu, G. Yin, W. Hou and H. Zhang, Tetrahedron, 2023, 134, 133319.
    122.Y. Ma, C. Hu, H. Guo, L. Fan, S. Yang and W.-H. Sun, Polymer, 2018, 148, 356-369.
    123.M. H. Tahir, T. Mubashir, T.-U.-H. Shah and A. Mahmood, Journal of Physical Organic Chemistry, 2019, 32, e3909.
    124.D. Wu, Y. Xu, H. Zhou, X. Feng, J. Zhang, X. Pan, Z. Gao, R. Wang, G. Ma, L. Tao, H. Wang, J. Duan, H. Wan, J. Zhang, L. Shen, H. Wang and T. Zhai, InfoMat, 2022, 4, e12320.
    125.S. C. Ray, in Applications of Graphene and Graphene-Oxide Based Nanomaterials, ed. S. C. Ray, William Andrew Publishing, Oxford, 2015, pp. 1-38.
    126.X. Yan and J. Li, Optical Materials, 2022, 128, 112438.
    127.Y. Wang, S. Li, J. Cao, Y. Jiang, Y. Zhang, W. Tang and Z. Wu, Materials & Design, 2022, 221, 110917.
    128.R. Yang, R. Wei, K. Li, L. Tong, K. Jia and X. Liu, Scientific Reports, 2016, 6, 36434.

    無法下載圖示 全文公開日期 2028/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE