簡易檢索 / 詳目顯示

研究生: 高佑鈞
Yu-Chun Kao
論文名稱: 缸內直噴引擎在層狀燃燒模式下之兩階段燃燒分析
Two Stage Combustion Analysis of the Stratified Charge Operation in a GDI Engine
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蘇裕軒
Yu-Hsuan Su
陳亮光
Liang-kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 94
中文關鍵詞: 缸內直噴引擎層狀燃燒稀薄燃燒雙韋伯函數熱釋放率
外文關鍵詞: Gasoline Direct Injection, Stratified Mode, Lean Combustion, Double Wiebe Function, Heat Release Rate
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

缸內直噴引擎(Gasoline Direct injection,GDI) 在低負載低轉速下以層狀燃燒模式(Stratified Mode Operation) 下進行運轉,在火星塞附近濃油,缸內整體貧油的狀況下,達到稀薄燃燒的效果,以達到低排放、低油耗的效果。以數學方程式來模擬內燃機的循環運作與燃燒反應,能讓引擎的研究有所了解之外,也能使研發成本降低,引擎燃燒方面可以由質量燃燒分率(Mass Fraction Burn, MFB) 曲線來表示,使用韋伯函數(Wiebe Function) 來做曲線擬合,量化引擎燃燒的現象,它被廣泛運用在不同燃燒系統與不同類型的內燃機上,來了解引擎燃燒結果並分析。本研究針對一wall-guided 渦輪增壓缸內直噴(Gasoline Direct Injection, GDI) 引擎來進行研究,透過調變點火角度來觀察引擎熱釋放變化,接著使用雙韋伯函(Double Wiebe Function)來擬合實驗的熱釋放曲線,藉由雙韋伯函數中9 個不同參數的變化,來得到不同點火角度對引擎的熱釋放影響並觀察層狀燃燒(Stratified Mode) 的第一階燃燒與第二階燃燒的變化。


A gasoline direct injection(GDI) engine operates in stratified mode operation at low load and low speed. High mixture concentration near the spark plug but overall lean mixture inside the cylinder achieve lower emissions and better fuel consumption as lean combustion. Using mathematical equations to simulate the combustion of internal combustion engines can not only have an understanding of engine research, but also reduce research and development costs. Engine combustion can represent by mass fraction burned curve, using wiebe function to do curve fitting to quantify the phenomenon of engine combustion. It is widely used in different types of internal combustion engines to understand the result of combustion. This paper uses a wall-guided GDI engine with a turbocharger system. Spark timing is adjusted in order to observe the heat release of engine, and then use double wiebe function to fit the experiment heat release curve. Through the results of 9 different parameters in double wiebe function, we can obtain the effect of different ignition angles on the engine and observe the changes in the 1st Stage Combustion and 2nd Stage Combustion of the stratified mode operation.

摘要i 英文摘要ii 致謝iii 目錄vi 圖目錄ix 表目錄xi 第一章緒論1 1.1 研究背景1 1.2 文獻回顧2 1.3 研究動機3 1.4 論文架構3 第二章實驗設備介紹5 2.1 實驗平台5 2.2 實驗軟體6 2.2.1 ECU 快速開發套件- MotoTron 系統6 2.2.2 MotoTron7 2.2.3 Simulink and MotoHawk8 2.2.4 MotoTune8 2.2.5 xPC-Target8 2.2.6 數據擷取卡9 2.3 實驗硬體10 2.3.1 引擎10 2.3.2 引擎動力計11 2.3.3 空燃比計12 2.3.4 廢氣分析儀13 2.3.5 曲軸角度編碼器14 2.3.6 火星塞式汽缸壓力計15 2.3.7 進排氣壓力計17 2.3.8 K-type 進排氣溫度計18 2.3.9 熱線式進氣流量計19 2.3.10 燃油流量計20 2.3.11 電子節氣門21 2.3.12 高壓線圈22 2.3.13 高壓共軌噴油系統23 2.3.14 可變氣門正時系統26 第三章引擎燃燒分析計算29 3.1 實驗操作29 3.2 汽缸體積計算30 3.3 比熱比擬合31 3.4 熱釋放計算33 3.5 熱釋放曲線擬合36 3.6 引擎作功計算38 3.6.1 每一循環的指示功計算38 3.6.2 平均有效壓力計算39 3.7 變異係數計算41 第四章實驗結果與討論42 4.1 引擎參數設定42 4.2 引擎缸內溫度壓力分析與結果43 4.2.1 缸內壓力結果43 4.2.2 缸內溫度結果46 4.3 引擎效率分析與結果49 4.3.1 BMEP 結果49 4.3.2 IMEPn 結果51 4.3.3 FMEP 結果54 4.4 點火角度對燃燒熱釋放之影響56 4.5 雙韋伯函數擬合參數分析59 4.6 熱釋放率曲線擬合結果61 4.7 廢氣分析結果75 第五章結論與未來展望76 5.1 結論76 5.2 未來展望77 參考文獻80

[1] J. B. Heywood, Internal Combustion Engine Fundamentals. McGraw-Hill, New York,
1988.
[2] H. Zhao, Advanced direct injection combustion engine technologies and development.Volume 1: Gasoline and gas engines. Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK, 2010.
[3] M. Costa, U. Sorge, S. Merola, A. Irimescu, M. L. Villetta, and V. Rocco, “Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission,” Energy, Elsevier, vol. 117, pp. 405–415, 2016.
[4] J. T. MARSHALL, “Direct injection for wright eighteen cylinder engine,” in SAE ANNUAL MEETING, SAE International, jan 1948.
[5] M. Costa, F. Catapano, P. Sementa, U. Sorge, and B. M. Vaglieco, “Mixture preparation and combustion in a gdi engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine,” Applied Energy, vol. 180, pp. 86–103, 2016.
[6] J. Cha, J. Kwon, Y. Cho, and S. Park, “The effect of exhaust gas recirculation (egr) on combustion stability, engine performance and exhaust emissions in a gasoline engine,” KSME International Journal, vol. 15, no. 10, pp. 1442–1450, 2001.
[7] M. Amann, T. Alger, and D. Mehta, “The effect of egr on low-speed pre-ignition in
boosted si engines,” SAE International Journal of Engines, vol. 4, no. 1, pp. 235–245,2011.
[8] M. Sellnau, J. Sinnamon, L. Oberdier, C. Dase, M. Viele, K. Quillen, J. Silvestri, and I. Papadimitriou, “Development of a practical tool for residual gas estimation in ic engines,” in SAE World Congress and Exhibition, SAE International, apr 2009.
[9] P. J. Shayler, W.-C. Lai, N. Brown, and N. Harbor, “Limits on charge dilution, fuel and air proportions for stable combustion in spark ignition engines,” in SAE 2004 World Congress and Exhibition, SAE International, mar 2004.
[10] H. Yasar, H. S. Soyhan, H. Walmsley, B. Head, and C. Sorusbay, “Double-wiebe function: An approach for single-zone hcci engine modeling,” Applied Thermal Engineering, vol. 28, no. 11, pp. 1284–1290, 2008.
[11] N. Claude Valery, R. Nzengwa, R. Danwe, A. Merlin, and M. Obounou, “Simulation of a di diesel engine performance fuelled on biodiesel using a semi-empirical 0d model,” Energy and Power Engineering, vol. 2013, 2013.
[12] M. Yıldız and B. Albayrak Çeper, “Zero-dimensional single zone engine modeling of an si engine fuelled with methane and methane-hydrogen blend using single and double wiebe function: A comparative study,” International Journal of Hydrogen Energy, vol. 42, no. 40, pp. 25756–25765, 2017.
[13] F. Maroteaux, C. Saad, and F. Aubertin, “Development and validation of double and single wiebe function for multi-injection mode diesel engine combustion modelling
for hardware-in-the-loop applications,” Energy Conversion and Management, vol. 105,
pp. 630–641, 2015.
[14] Y. Yeliana, C. Cooney, J. Worm, D. Michalek, and J. Naber, “Estimation of double wiebe function parameters using least square method for burn durations of ethanolgasoline blends in spark ignition engine over variable compression ratios and egr levels,”Applied Thermal Engineering, vol. 31, no. 14, pp. 2213–2220, 2011.
[15] H. Gurbuz, “Parametrical investigation of heat transfer with fast response thermocouple in si engine,” ASCE, vol. 142, 2016.
[16] S. K. Kamboj and M. N. Kairimi, “Effects of compression ratios, fuels and specific heats on the energy distribution in spark- ignition engine,” IJETAE, vol. 2, 2012.
[17] Y.-Y. Wu, B.-C. Chen, and J. H. Wang, “Experimental study on hcci combustion in a small engine with various fuels and egr,” Aerosol and Air Quality Research, vol. 16,pp. 3338––3348, 2016.
[18] Y. B. Cengel and M. A. Boles, Thermodynamics. An Engineering Approach. McGraw-
Hill College, Boston, 2006.
[19] E. Sher and T. Bar-Kohany, “Optimization of variable valve timing for maximizing
performance of an unthrottled si engine—a theoretical study,” Energy, vol. 27, no. 8,
pp. 757–775, 2002.

無法下載圖示 全文公開日期 2026/12/30 (校內網路)
全文公開日期 2026/12/30 (校外網路)
全文公開日期 2026/12/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE