簡易檢索 / 詳目顯示

研究生: 盧裕翔
Yu-Xiang Lu
論文名稱: 汽油缸內直噴式引擎層狀燃燒模式之油氣分布行為數值模擬分析
Numerical Analysis of Fuel Distribution Behaviors in a Stratified Combustion Mode for Gasoline Direct Injection Engine
指導教授: 蘇裕軒
Yu-Hsuan Su
口試委員: 姜嘉瑞
Chia-Jui Chiang
吳浴沂
Yu-Yi Wu
盧昭暉
Chao-Hui Lu
呂百修
Bai-Siou Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 直噴式汽油引擎層狀進氣噴油正時雙噴模式
外文關鍵詞: double injection
相關次數: 點閱:172下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多學者指出汽油缸內直接噴射式(gasoline direct injection,GDI) 引擎能達到高效率、低油耗及降低汙染等優點, 其中層狀燃燒為低油耗之關鍵技術, 層狀燃燒系統設計關鍵在點火位時, 混合氣以層狀分布,火星塞附近區域能聚集較濃之油氣,而其他區域油氣較稀薄,, 使得燃燒室內維持整體較高的空燃比, 因此獲得極低的油耗。但內燃機缸內流場極為複雜、不易掌握, 本研究針對目標GDI 引擎去探討燃燒室內流場現象, 分析使用的軟體為Ansys, 計算流體力學軟體(Computational Fluid Dynamics,CFD)利用Ansys Geometry進行幾何建構與修改, 接著進入Ansys Mesh對建置完成的幾何進行網格劃分, 最後來到Ansys Fluent選定數值模型即設定初始條件後開始計算, 以上設置完成後先從冷流場作分析,, 從中發現紊流動能與紊流強度與油氣的混合有直接關係, 因此在設計層狀系統的油氣分布時, 找尋壓縮行程中最大的紊流動能點當作噴油的結束時刻, 可使油氣集中於火星塞區域。最後本研究改變進氣流道與原始流道作比較, 發現只要紊流動能增強, 油氣的混合就會於火星塞區域更加均勻,如上可得知分析冷流場之重要性及有助於層狀模式系統的建立。


    Many researchers have demonstrated that gasoline direct injection(GDI) engine can achieve high efficiency, low specific fuel consumption and low emissions.The key energy-saving technology is stratified combustion. With stratified combustion, at the ignition timing, the richer mixture should be gathered in spark plug region, the leaner air-fuel ratio is distributed in the other region. So that,the overall air fuel ratio in combustion chamber can keep in leaner air-fuel ratio condition, and decrease engine fuel consumption. The stratified combustion design is related to in-cylinder flow field, but flow field of internal combustion engine is extremely difficult to observe. Therefore, this research discusses the phenomenon of in-cylinder flow in combustion chamber by using ANASYS CFD software. First, the geometry module is applied for modifying target geometry and then generating mesh. After selecting numerical model and setting initial conditions, the cold-flow simulation can be started. From turbulent kinetic energy analysis, the mixture formation is significant related to turbulent kinetic energy, and finding maximum turbulent kinetic energy as the end of injection timing can concentrate richer mixture near spark plug.Furthermore, with proposed intake port design, higher turbulence intensity can be achieved than original one, and better stratified charge can be created. From above, the cold flow field simulation can give a well contribution to stratified combustion design.

    1 緒論 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2 引擎實驗平台架構與設備 12 2.1 引擎本體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 2.2 噴油嘴. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 2.3 火星塞式汽缸壓力計. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 汽缸壓力計電荷放大器. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 曲軸角度編碼器. . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 2.6 引擎動力計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 3 引擎數值模型建立26 3.1 汽缸與活塞的幾何模型與數值網格. . . . . . . . . . . . . . . . . . . . 29 3.1.1 汽缸與活塞的幾何模型. . . . . . . . . . . . . . . . . . . . . . 29 3.1.2 網格劃分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 閥門揚程計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 3.3 數值模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 3.3.1 RNG K-epsilon Viscous Model . . . . . . . . . . . . . . . . . 39 3.3.2 Discrete Phase Model . . . . . . . . . . . . . . . . . . . . . . 40 3.3.3 初始條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.3.4 邊界條件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 實驗分析與數值模擬結果驗證 59 4.1 穩態實驗缸壓-曲軸角關係圖. . . . . . . . . . . . . . . . . . . . . . . 60 4.2 冷流場之實驗數據及數值模擬驗證. . . . . . . . . . . . . . . . . . . . 62 4.2.1 能量守恆. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.2.2 進、排氣氣體質量流率. . . . . . . . . . . . . . . . . . . . . . 72 4.2.3 汽缸內部流場. . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 結果與討論 84 5.1 均質模式(homogeneous combustion mode) 油氣分佈結果. . . . . . 85 5.2 層狀模式(Stratified combustion mode) 之設計. . . . . . . . . . . . 98 5.2.1 層狀模式改變噴油正時之油氣分佈模擬結果. . . . . . . . . . . 104 5.3 層狀模式二次噴射(Two-stage fuel injection strategy) 模擬. . . . . . 120 5.4 改變進氣流道之油氣分佈模擬. . . . . . . . . . . . . . . . . . . . . . 124 6 結論與未來展望 131 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 參考文獻 134

    [1] 吳志勇, 「缸內直噴引擎GDI 技術的發展與未來」, 國立成功大學航空太空工程研究所,(2008).
    [2] 曾文業、吳明勳、李訓谷、林大惠, 活塞幾何表面對於汽油缸內直噴引擎然氣混合效能之影
    響,(2010).
    [3] 鄭瑞圻、王敬文, 噴油正時對於缸內油氣混合之影響,(2015).
    [4] . H. Friedl, M. Certic, P. K. Alois Fuerhapter, K. Koeck, and M. Neubauer, “Technology
    features and development methods for spark ignited powertrain to meet 2020 co2 emission
    targets,” SAE Technical Paper, 2013, 36-0438.
    [5] M. B. Celik and B. Ozdalyan, gasoline direct injection.
    [6] Y. T. Kume, K. Iwamto, M. Iida, K. Murakami, Akishino, and H. Ando, “Combustion
    control technologies for direct injection si engine,” SAE Technical paper, 960600.
    [7] U. Takanobu, O. Takeshi, F. Shigeo, I. Satoru, A. Kazuhiro, T. Masahiro, and Y. Satoru,
    “Stratified charge combustion internal combustion engine of spark ignition type.”
    [8] J. B.Heywood, “Internal combustion engine fundamentals.”
    [9] T. Tomoda, M. Kubota, R. Shimizu, and Nomura, “Numerical analysis of mixture formation
    of a direct injection gasoline engine,” JSME International Journal Series B-Fluids and
    Thermal Engineering, vol. 46(1), pp. 2–9, 2003.
    [10] M. Pontoppidan, G. Gaviani, and M. Marelli, “Direct fuel-injection a study of injector
    requirements for different mixture preparation concepts,” SAE Technical Paper, 970628.
    [11] C. Preussner, C. Doring, and S. Fehler, Sand Kampmann, “Gdi: interaction between mix-
    ture preparation, combustion system and injectior performance,” SAE Technical paper,
    980498.
    [12] Y. Yong and C. M. DeMinco, “Numerical investigation of mixture preparation in a gdi
    engine,” SAE Technical paper, 01-3375.
    [13] S. Henriot, A. Chaouche, E. Cheve, and J.-M. Duclos, “Cfd-aided development of a si-di
    engine,” Oil and Gas Science and Technology, vol. 54(2), pp. 279– 286, 1999.
    [14] A. Shizuo, S. Koichi, B. Toyokazu, N. Tatsushi, and O. F, “Combustion analysis on piston
    cavity shape of a gasoline direct injection engine,” SAE Technical Paper, 2001, 01-2029.
    [15] S.-J. Kim, S. Hyun, and J. Park., “Optimization of cold start operating conditions in a
    stoichiometric gdi engine with wall-guided piston using cfd analysis,” SAE Technical paper,
    2013, 01-2650.
    [16] B. Dhingra, S. Sharma, K. Vora, and B. Ashok, “Cfd modeling of advanced swirl technique
    at inlet-runner for diesel engine,” SAE Technical Paper, 2015-26-0095.
    [17] C.Preussner, C.Doring, S.Fehler, and S.Kampmann, “Gdi:interaction between mixture
    preparation,combustion system and injector performance,” International Congress and Exposition
    , pp. 23–26, 1998.
    [18] C. Habchi, D. Verhoeven, C. H. Huu, L. Lambert, J. L. Vanhemelryck, and T. Baritaud,
    “Modeling atomization and break up in high-pressure diesel sprays,” SAE Technical Paper,
    970881.
    [19] W. Waidmann, A. Boemer, and M. Braun, “Adjustment and verification of model param-
    eters for diesel injection cfd simulation,” SAE Technical Paper, 2006-01-0241.
    [20] A. Du, Z. Zhu, C. Chu, and M. Li, “Effects of injector spray layout and injection strategy
    on gas mixture quality of gasoline direct injection engine,” SAE Technical Paper, 01-0747.
    [21] G.K.Fraidl, W.f.Plock, and M.Wirth, “Gasoline direct injection: Actual trends and future
    strategies for injection and combustion systems,” Intermational Congress and Exposition,
    1996, 960660.

    QR CODE