簡易檢索 / 詳目顯示

研究生: 劉加陽
Chia-yang Liu
論文名稱: 四行程二閥內燃引擎的氣流特性
In-Cylinder Flow Characteristic of a Four-Stroke 2-Valve Internal Combustion Engine
指導教授: 黃榮芳
Rong fung Huang
口試委員: 陳明志
Ming Jyh Chern
孫珍理
Chen li Sun
劉昌煥
none
唐永新
none
楊騰芳
none
葉啟南
none
張家和
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 227
中文關鍵詞: 層狀燃燒均質燃燒
外文關鍵詞: homogeneous or stratified charge
相關次數: 點閱:314下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從Mitsubishi Motor 於1995年開始採用缸內燃油噴射(gasoline direct injection, GDI)技術於汽車引擎之後,全世界均廣為認知此項技術的優點,包括節省油耗、降低排氣污染、增加燃燒效率,進而提升整體性能輸出。通常缸內燃油噴射技術必須配合缸內氣流的滾轉與/或旋轉運動以達到所需求的空氣/燃料混合型態(homogeneous或 stratified charge),才能達成上述之目的。因此,探討缸內流場以及噴霧流場與氣流運動交互作用後的結構與衍化有其必要性。本研究利用商業套裝計算流體動力學(computational fluid dynamics, CFD)軟體STAR-CD,針對一部四行程單缸二閥機車引擎,探討在有、無加入燃油噴射的狀況下,於進氣和壓縮行程期間分析缸內氣流繞著缸徑軸上的滾轉運動和繞著汽缸軸上的旋轉運動以及缸內燃油噴射之噴霧流場與氣流運動交互作用後的結構與衍化,並使用質點影像速度儀(particle image velocimetry, PIV)量測噴油嘴將燃料射出於一大氣壓力下之霧化情形,並藉由循環渦度滾轉比、循環渦度旋轉比、噴霧穿透長度及霧化液滴粒徑,了解缸內氣流及噴霧特性。計算結果顯示,引擎的缸內流場為極佳之滾轉運動,缸內燃油噴射隨時間衍化的軌跡與氣流的交互作用將可作為設計缸內直噴引擎的重要參考。噴霧實驗結果發現,經噴油嘴射出的燃料,在短時間內具有高澎脹、高穿透以及高霧化,並使用粒徑分析儀量測50 bar結果顯示,在不同距離下,霧化的液滴平均直徑約為30~50 μm。


    Abstract
    The gasoline direct injection (GDI) has been engaged to the combustion system of an automotive engine since 1995 by the Mitsubishi Motor. It has been well recognized that the fuel consumption, exhaust emission, and engine performance can be drastically increased by application of the GDI technology. The GDI technology usually must be combined with the in-cylinder flow motion in order to regulate the mixture concentration distribution in the cylinder to a target pattern. By using this technology, the mixture preparation in the engine cylinder can be homogeneous or stratified charge and therefore the combustion can proceed under control. The GDI technology, however, is not popularly used in the small motorcycle engine. In this study, the feasibility of application of the GDI technology to a single cylinder, two-valve, 249 cm3 displacement motorcycle engine is studied numerically and experimentally. The engine is installed by a fuel injector and is hooked up to a modified engine test bench. The in-cylinder flows with/without fuel injections are calculated by a commercial software package of CFD code, the STAR-CD. The in-cylinder flow shows the evolution process of the tumble motion and strong tumble intensity. Coherent tumbling structure starts to appear after 40o crank angle from the top dead center during the intake stroke. It persists even to the final stage of the compression stroke. Therefore, taking the strategy of injecting the fuel during the intake stroke (about 90o after top dead center) to form the homogeneous charge for the high-load and high-speed operation as well as injecting the fuel during the compression stroke (about 60o before the top dead center) to form the stratified charge for the low-load and low-speed operation becomes possible. The tumble flow motion and its interaction with the atomized fuel droplets are also studied. The position, direction, timing, and pressure of injection are found to be the most important parameters. In order to characterize the injection features, the atomization characteristics of fuel injection in the atmosphere are measured by a particle image velocimetry. The spray penetration and droplet size distribution are presented.

    摘要 i Abstract ii 目錄 iii 符號索引 v 表圖索引 viii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 8 第二章 計算模擬模型與實驗之研究方法 9 2.1 計算模擬模型之方法 9 2.1.1 計算流力軟體的簡介 9 2.1.2 統御方程式 11 2.1.3 數值方法 13 2.1.4 數值模擬 25 2.1.5 物理參數定義 27 2.2 噴霧實驗之研究方法 29 2.2.1 實驗設備 29 2.2.2 實驗儀器 30 第三章 缸內流場計算結果與討論 37 3.1 缸內氣流滾轉運動 37 3.1.1 引擎轉速1500 RPM之流場結構與衍化過程 37 3.1.1.1 計算截面於對稱面上 37 3.1.1.2 計算截面於Z = 1.81 cm 41 3.1.1.3 計算截面於Z = -1.81 cm 44 3.1.2 引擎轉速2500 RPM之流場結構與衍化過程 47 3.1.2.1計算截面於對稱面上 47 3.1.2.2計算截面於Z = 1.81 cm 50 3.1.2.3計算截面於Z = -1.81 cm 53 3.1.3 量化分析 56 3.1.3.1 循環平均滾轉比 57 3.2 缸內氣流旋轉運動 59 3.2.1 引擎轉速1500 RPM之流場結構與衍化過程 60 3.2.1.1 計算截面y = 6 cm 60 3.2.1.2 計算截面y = 5 cm 63 3.2.1.3 計算截面y = 4 cm 64 3.2.1.4 計算截面y = 3 cm 65 3.2.1.5 計算截面y = 2 cm 66 3.2.2 引擎轉速2500 RPM之流場結構與衍化過程 67 3.2.2.1 計算截面y = 6 cm 67 3.2.2.2 計算截面y = 5 cm 70 3.2.2.3 計算截面y = 4 cm 71 3.2.2.4 計算截面y = 3 cm 72 3.2.2.5 計算截面y = 2 cm 73 3.2.3 量化分析 73 3.2.3.1 循環平均旋轉比 74 3.3 比較 75 第四章 噴嘴在一大氣壓下的噴霧特性 76 4.1 側向截面噴霧流場結構與衍化過程 76 4.2 正向截面噴霧流場結構與衍化過程 77 4.3 正向截面噴霧之全域速度場 78 4.4 量化分析 78 4.4.1 燃油液滴速度梯度沿著z軸(rx = 0)之分佈 79 4.4.2 燃油液滴速度梯度沿著rx軸(z/dw = 238)之分佈 79 4.4.3 燃油液滴速度梯度沿著rx軸(z/dw = 380)之分佈 80 4.4.4 噴霧流場之液滴粒徑分析 80 第五章 結論與建議 81 5.1 結論 81 5.2 建議 82 參考文獻 83

    [1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33 October 1999, pp. 4029-4036.
    [2] Zhao, F., Lai, M. C., Harrington, D. L., “Automotive Spark-Ignited Direct-Injector Gasoline Engines,” Progress in Energy and Combustion Science, Vol. 25, 1999, pp. 437-562.
    [3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engine-The 1986 Freeman Scholar Lecture.” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
    [5] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979, pp. 384-400, SAE 790095.
    [6] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engine, SAE Transactions, Vol. 88, 1979. pp. 371-382, SAE 790094.
    [7] Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine-Focus on Cycle-Resolved Turbulence,” Journal of Engine, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 294-321, SAE 900056.
    [8] Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations-Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 354-374, SAE 900059.
    [9] Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
    [10] Rönnbäck, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 1824-1838, SAE 912376.
    [11] Rouland, E., Floch, A., Ahmed, A., Dionnet, D., and Trinite, M., “Characterization of Intake Generated Tumble Flow in 4-Valve Engine Using Cross-Correlation Particle Image Velocimetry,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 195.1-195.15.
    [12] Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV-A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
    [13] Azersu, A., Dodo, S., Someya, T., and Oikawa, C., “A Study on the Structure of Diesel Spray - 2-D Visualization of the None-Evaporating Spray,” International symposium COMODIA 90, 1990, pp. 199-204.
    [14] Cao, Z. M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measure of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids, 2000, S211-S219.
    [15] Han, Z., Reitz, R. D., “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 848-860, SAE 970625.
    [16] Han, Z., Fan, L., and Reitz, R. D., “Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1423-1441, SAE 970884.
    [17] Matsumura, E., Tomita, T., Takeda, K., Furuno, S., and Senda, J., “Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 238-245, SAE 2003-01-0060.
    [18] Tanaka, Y., Takano, T., Sami, H., Sakai, K., and Osumi, N., “Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 218-235, SAE 2003-01-0059.
    [19] Papageorgakis, G., Assanid, D. N., “Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, pp. 82-107, SAE 980135.
    [20] Grimaldi, C. N., Postrioti, L., Stan, C., and Tröger, R., “Analysis Method for the Spray Characteristics of a GDI System with High Pressure Modulation,” Journal of Engine, SAE Transactions-Section 3, Vol. 109, 2000, pp. 1214-1224, SAE 2000-01-1043.
    [21] Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 759-766, SAE 970539.
    [22] Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., “Development of Direct Injection Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 767-776, SAE 970540.
    [23] Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture Preparation for Direct-Injection SI Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 794-801, SAE 970542.
    [24] Warsi, Z. U. A., “ Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No 2, February 1981, pp. 240-242.
    [25] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
    [26] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
    [27] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Addison Wesley Longman Limited, New York, 1995.
    [28] Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, July 1992, pp. 191-215.
    [29] Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, 1990, pp. 1202-1215.
    [30] Keane, R. D., Adrain, R. J., and Zhang, Y., “Super-Resolution Particle Imaging Velocimetry,” Measurements of Science and Technology, Vol. 6, No. 6, 1995, pp. 754-768.
    [31] Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, 1999, pp. 1-10.
    [32] 楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [33] 林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。

    無法下載圖示 全文公開日期 2012/06/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE