簡易檢索 / 詳目顯示

研究生: 徐瑞甫
Jui-Fu Hsu
論文名稱: 以CFD模擬缸內直噴汽油引擎在層狀燃燒模式下火星塞周圍動態油氣分佈狀況及其對引擎性能與油耗之影響
CFD Simulation of the Fuel Distribution Dynamics Around the Spark Plug and its Effects on the Performance and Emissions of a GDI Engine in Stratified Mode Combustion
指導教授: 姜嘉瑞
Chia-Jui Chiang
蘇裕軒
Yu-Hsuan Su
口試委員: 蘇裕軒
溫琮毅
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 195
中文關鍵詞: 預測燃油二階段噴射油氣分佈
外文關鍵詞: predict, two-stage injection, fuel and air distribution
相關次數: 點閱:137下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於環保法規的日趨嚴格,分層燃燒模式成為應對環保法規的一種內燃機控制技術,而分層燃燒中的油氣分佈狀態一直是研究的重點。由於引擎的轉速極快,汽缸內的燃油與空氣皆不易觀察,對分層燃燒的發展形成挑戰。因此,本研究使用CFD 方法對GDI 引擎進行數值模擬汽缸內動態油氣分佈,分析並預測油氣分佈對於引擎性能、汙染與油耗的影響。具體來說,油氣在不同的化學當量比下,會對燃燒行為產生不同的影響,透過燃油一階段噴射與燃油二階段噴射兩種不同的分層模式,對汽缸內油氣分佈對燃燒行為的影響進行分析,就能有效預測GDI 引擎在不同分層模式對於引擎性能、汙染與油耗的影響,再透過實驗結果的比對,確認預測方法的有效性。透過實驗結果證明,使用CFD 方法對汽缸內的動態油氣分佈進行分析,能有效預測分層燃燒下油氣分佈對於引擎性能、汙染與油耗的影響。比較燃油二階段噴射與燃油一階段噴射的實驗結果得知,燃油二階段噴射的引擎出力提升2.2%、BSFC 下降10.4%、CO 下降21.2%、NOx 下降10%,從以上結果證明, 燃油二階段噴射不只提升的引擎性能,並改善了污染與油耗。


    In recent years, due to strict environmental protection regulations, the stratified combustionmode has become a kind of internal combustion engine control technology. The focus of research is fuel and air distribution in stratified combustion mode. Because the engine speed extremely fast, the fuel and air in the cylinder are not easy to observe, therefore, it poses a challenge to the development of stratified combustion mode. In this study, the CFD method has been used to simulate the dynamic fuel and air distribution in the cylinder of the GDI engine, analyze and predict the impact of fuel and air distribution on engine performance, pollution and fuel consumption. Specifically, fuel and air will have different effects on combustion
    behavior under different stoichiometric ratios. Through two different stratification
    modes, one-stage injection and two-stage injection, analyze the influence of fuel and air distribution in the cylinder on combustion behavior, it can effectively predict the impact of GDI engine on engine performance, pollution and fuel consumption. Then, by confirming the effectiveness of the prediction method by comparing the results of the experiment. The experimental results prove that the use of CFD method can effectively predict the impact of fuel and air distribution on engine performance, pollution and fuel consumption. With the engine test result, the two-stage fuel injection mode, comparing with onestage fuel injection mode, increase 2.2 % of power, BSFC decrease 10.4 %, CO decrease 21.2 %, NOx decrease 10 %, With the above benefits, we discover that the two-stage fuel injection mode increases power, reducing emissions and fuel consumption.

    摘要.................................................................................................................................... i 英文摘要............................................................................................................................ ii 致謝.................................................................................................................................... iii 目錄.................................................................................................................................... vii 圖目錄................................................................................................................................ xiv 表目錄................................................................................................................................ xv 第一章緒論...................................................................................................................... 1 1.1 研究背景........................................................................................................... 1 1.2 文獻回顧........................................................................................................... 6 1.3 研究動機........................................................................................................... 14 1.4 論文架構........................................................................................................... 15 第二章引擎實驗平台架構與設備.................................................................................. 17 2.1 引擎本體........................................................................................................... 19 2.2 高壓燃油泵....................................................................................................... 21 2.3 噴油嘴............................................................................................................... 22 2.4 火星塞式汽缸壓力計....................................................................................... 23 2.5 汽缸壓力計電荷放大器................................................................................... 25 2.6 曲軸角度編碼器............................................................................................... 26 2.7 引擎動力計....................................................................................................... 27 第三章引擎數值模型建立與做功計算.......................................................................... 29 3.1 引擎幾何模型的建立與網格劃分................................................................... 31 3.1.1 引擎幾何模型...................................................................................... 31 3.1.2 網格劃分.............................................................................................. 33 3.1.3 曲軸迴轉參數與閥門揚程計算.......................................................... 39 3.2 數值模型........................................................................................................... 41 3.2.1 RNG Kepsilon Viscous Model............................................................ 41 3.2.2 Discrete Phase Model ........................................................................... 43 3.2.2.1 Plainorifice Atomizer Model............................................................... 43 3.2.2.2 Two way Coupling Model ................................................................... 49 3.2.2.3 Breakup Model ..................................................................................... 51 3.2.3 初始條件與邊界條件.......................................................................... 56 3.2.3.1 初始條件.............................................................................................. 56 3.2.3.2 邊界條件.............................................................................................. 58 3.3 引擎作功計算................................................................................................... 61 3.3.1 每一循環的指示功計算...................................................................... 61 3.3.2 平均有效壓力計算.............................................................................. 63 第四章數值模擬結果驗證.............................................................................................. 65 4.1 汽缸穩態壓力實驗........................................................................................... 66 4.2 冷流場之模型驗証與實驗數據比較............................................................... 67 4.2.1 數值模型的能量守恆.......................................................................... 68 4.2.2 進氣與排氣門的質量流率.................................................................. 71 4.2.3 模擬與實驗汽缸壓力比較.................................................................. 74 第五章結果與討論.......................................................................................................... 77 5.1 汽缸內部流場模擬結果................................................................................... 79 5.2 層狀模式之油氣分佈模擬結果....................................................................... 87 5.2.1 燃油一噴之火星塞週圍油氣濃度模擬結果...................................... 90 5.2.2 燃油一噴之油氣擴散趨勢模擬結果.................................................. 92 5.2.3 燃油二噴之火星塞週圍油氣濃度模擬結果...................................... 115 5.2.4 燃油二噴之油氣擴散趨勢模擬結果.................................................. 117 5.3 燃油一噴與二噴之動態油氣模擬結果差異分析........................................... 140 5.3.1 火星塞週圍動態油氣分佈之模擬結果差異分析.............................. 141 5.3.2 汽缸內動態油氣分佈之模擬結果差異分析...................................... 143 5.3.3 不同SOI 下火星塞週圍動態油氣分佈之模擬結果差異分析.......... 148 5.3.4 不同SOI 下汽缸內動態油氣分佈之模擬結果差異分析.................. 150 5.4 燃油一噴與二噴之引擎實驗結果差異分析................................................... 153 5.4.1 不同點火正時下之引擎實驗結果分析.............................................. 154 5.4.2 不同噴油正時下之引擎實驗結果分析.............................................. 157 第六章結論未來展望...................................................................................................... 163 6.1 結論................................................................................................................... 163 6.2 未來展望........................................................................................................... 164 vi

    [1] 經濟部能源局, “我國燃料燃燒二氧化碳排放統計與分析,” 經濟部能源局, 2019.
    [2] S. Shuai, X. Ma, Y. Li, Y. Qi, and H. Xu, “Recent progress in automotive gasoline direct injection engine technology,” Automotive Innovation, vol. 1, no. 2, pp. 95–113, 2018.
    [3] 吳志勇, “缸內直噴引擎gdi 技術的發展與未來,” 國立成功大學航空太空工程研究所, 2008.
    [4] F. Duronio, A. De Vita, A. Montanaro, and C. Villante, “Gasoline direct injection engines– a review of latest technologies and trends. part 2,” Fuel, vol. 256, p. 116947,2020.
    [5] M. Bahattin and B. Ozdalyan, “Gasoline direct injection,” Fuel Injection, pp. 1–17,2010.
    [6] K. Purnomo, “缸內直噴汽油引擎之層狀及均質油氣混合實驗研究,” 國立台灣科技大學機械工程所, 2017.
    [7] J. Livengood, W. PC, et al., “Correlation of autoignition phenomena in internal combustion engines and rapid compression machines,” 1955.
    [8] X. He, M. Donovan, B. Zigler, T. Palmer, S. Walton, M. Wooldridge, and A. Atreya, “An experimental and modeling study of isooctane ignition delay times under homogeneous charge compression ignition conditions,” Combustion and Flame, vol. 142, pp. 266–275, 2005.
    [9] 盧裕翔, “汽油缸內直噴式引擎層狀燃燒模式之油氣分布行為數值模擬分析,” 國立台灣科技大學機械工程所, 2016.
    [10] E. Hu, Z. Xu, Z. Gao, J. Xu, and Z. Huang, “Experimental and numerical study on
    laminar burning velocity of gasoline and gasoline surrogates,” Fuel, vol. 256, p. 115933,2019.
    [11] 林芃吾, “利用數值模擬分析汽油缸內直噴式引擎之均質燃燒及設計其層狀模式,” 國立台灣科技大學機械工程所, 2017.
    [12] Z. Wang and X. He, “Combustion visualization and experimental study on spark induced compression ignition (sici) in gasoline hcci engines,” Energy Conversion and
    Management, vol. 51, pp. 908–917, 2010.
    [13] Y. Qian and Z. Gong, “Numerical study of the effect of combustion chamber structure on scavenging process in a boosted gdi engine,” Energy, vol. 168, pp. 9–29, 2019.
    [14] B. Dhingra and S. Sharma, “Cfd modeling of advanced swirl technique at inletrunner for diesel engine,” Applied Thermal Engineering, 2015.
    [15] D. Jing and S.J.Shuai, “Development of a turbulenceinduced breakup model for gasoline spray simulation,” Applied Thermal Engineering, 2015.
    [16] S. Malaguti and S. Fontanesi, “Modelling of primary breakup process of a gasoline direct engine multihole spray,” Atomization and Sprays, vol. 23, 2013.
    [17] R. Reitz et al., “Modeling atomization processes in highpressure vaporizing sprays,” Atomisation and Spray technology, vol. 3, pp. 309–337, 1987.
    [18] W. Waidmann and A. Boemer, “Adjustment and verification of model parameters for
    diesel injection cfd simulation,” SAE Technical Paper, 2006.
    [19] J. C. Beale and R. D. Reitz, “Modeling spray atomization with the kelvinhelmholtz/rayleightaylor hybrid model,” Atomization and sprays, vol. 9, 1999.
    [20] Y.Y.Wu and B.C.Chen, “Heat transfer model for smallscale
    aircooled sparkignition fourstroke engines,” International Journal of Heat and Mass Transfer, vol. 49, pp. 3895–3905, 2006.
    [21] J. Heywood, “International combustion engine fundamentals,” McGrawHill. Inc, 1988.
    [22] Y. B. Cengel and M. A. Boles, “An engineering approach,” McGrawHill. Inc, 2006.
    [23] 王華翊, “利用數值模擬與實驗分析噴油正時對汽油缸內直噴式引擎層狀模式的影響,” 國立台灣科技大學機械工程所, 2018.

    QR CODE