簡易檢索 / 詳目顯示

研究生: Mahmoud
Mahmoud - Farfoura
論文名稱: 先進的數字水印技術為不同的數字媒體版權保護與內容認證(關係型數據庫和H.264/AVC壓縮視頻)
Advanced Digital Watermarking Techniques for Copyright Protection and Content-authentication of Different Digital Media (Relational Databases & H.264/AVC Compressed Video)
指導教授: 洪西進
Shi-Jinn Horng
口試委員: 郭景明
Jing-Ming Gou
李祖添
none
辛錫進
none
廖弘源
none
曾煜棋
none
詹寶珠
none
鍾國亮
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 187
中文關鍵詞: relational databasedigital watermarkingrobustnessblindnessH.264/AVCreversibilityintegritycryptographydiscrete cosine transformtamper detectiontamper localizationattack characterizationfragile watermarkingsemi-fragile watermarkingintra/inter prediction mode.
外文關鍵詞: relational database, digital watermarking, robustness, blindness, H.264/AVC, reversibility, integrity, cryptography, discrete cosine transform, tamper detection, tamper localization, attack characterization, fragile watermarking, semi-fragile watermarking, intra/inter prediction mode.
相關次數: 點閱:323下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • --


    The tremendous advances in digital media content management and distribution tools and ever evolving social networks, blogs, and video sharing websites all contributed in making it rather easy to access, edit and redistribute digital multimedia contents such as images, video, text, and audio. Thus, a pressing need arises to protect multimedia data from being misused or its digital copyrights breached through various methods of illicit content manipulation and piracy.
    Digital watermarking is providing a promising method of protecting digital data from illicit copying and manipulation by embedding a secret code directly into the data. Digital watermarking allows a user to add a layer of protection to the digital media content by identifying copyright ownership and delivering a tracking capability. That addition monitors and reports where the user’s digital media contents are being used enabling the enforcement of proper distribution channels maintaining the established rights of original authors and owners.
    This dissertation aims at presenting advanced digital watermarking algorithms for two different digital media contents, namely relational databases and H.264/AVC compressed videos, for copyright protection and content-authentication purposes. We find these two domains are of utmost importance to focus on currently since these types of media lack copyright protection and content protection techniques.
    Pertaining to the relational database watermarking, we present three algorithms. First one is a blind and robust distortion-free algorithm. The second one is a blind and robust reversible algorithm dedicated to applications which don’t permit permanent errors. And the third one is a new authentication protocol established to solve the problem of falsely claimed ownership by introducing a trusted time-stamping service (TSS) to the watermarking method which plays a significant role in authenticating the watermarked relation, the embedded watermark and the relation’s owner.
    In the field of H.264/AVC video watermarking, two algorithms are introduced to tackle the content-authentication problem based on fragile watermarking. In the first algorithm, the H.264 variant features are securely hashed and embedded into IPCM-block low pixel samples. In the second algorithm, the features are securely hashed and embedded into the last nonzero ac residual of some carefully selected luma 4×4 sub-blocks to achieve the highest levels of sensitivity to intentional and unintentional modifications while maintaining the visual perception and video coding efficiency. Whereas the other algorithm is based on semi-fragile watermarking scheme in which tamper detection and localization of attacks is achieved.
    As a result, various aspects of digital watermarking such as imperceptibility, robustness, fragility, semi-fragility and reversibility each best suited to the media content have been proposed and reported. Experimental results we obtained show the effectiveness of the proposed methods in thwarting and/or detecting several types of attacks while maintaining high perceptual quality, reasonable payload capacity and coding efficiency of digital media.

    Contents Dedications iii Acknowledgements iv List of Figures ix List of Tables xii Abstract xiv Chapter 1 1 1. Introduction 1 1.1 Digital Watermarking 1 1.1.1 Basic Watermarking Processes 2 1.1.2 Types of Digital Watermarking 2 1.1.3 Digital Watermarking Applications 3 1.2 Related Researches and Preliminary Background 3 1.2.1 Relational Database Watermarking (RDW) 3 1.2.2 H.264/AVC Video Watermarking 9 Chapter 2 17 A Novel Blind Method for Watermarking Relational Databases 17 2.1 Introduction 17 2.2 The Proposed Watermarking Method 19 2.2.1 Data Partitioning 19 2.2.2 Relation Preprocessing 22 2.2.3 Watermark Embedding 22 2.2.4 Watermark Extraction 25 2.2.5 Integrity Verification 27 2.3 Experiments and Analysis 28 2.3.1 Integrity Test 29 2.3.2 Robustness Test 31 2.3.3 Comparisons and Performance Analysis 34 Chapter 3 36 A Novel Blind Reversible Method for Watermarking Relational Databases 36 3.1 Introduction 36 3.2 The Proposed Watermarking Method 39 3.2.1 Watermark Embedding 40 3.2.2 Watermark Extraction 42 3.3 Experiments and Analysis 45 3.3.1 Imperceptibility Test 45 3.3.2 Robustness Test 46 3.3.3 Overhead Cost Test 50 Chapter 4 52 A Blind Reversible Method for Watermarking Relational Databases Based on a Time-stamping Protocol 52 4.1 Introduction 52 4.2 The Proposed Watermarking Method 53 4.2.1 Time-stamping Protocol for Relational Database Watermarking 53 4.2.2 Security Analysis 55 4.2.3 Notation and Parameters 56 4.2.4 Watermark Embedding 57 4.2.5 Watermark Detection 59 4.2.6 Robustness Analysis 61 4.3 Experimental Results 74 4.3.1 Imperceptibility Test 75 4.3.2 Overhead Cost Test 75 4.3.3 Tradeoffs 76 Chapter 5 77 A Low Cost Fragile Watermarking Method Exploiting the IPCM Macroblocks in H.264/AVC Video 77 5.1 Introduction 77 5.2 Intra/inter Prediction in H.264/AVC 78 5.2.1 Intra/inter Prediction Overview 78 5.2.2 Intra Mode Prediction Sensitivity 80 5.3 The Proposed Watermarking Method 81 5.3.1 Authentication Information Generation 82 5.3.2 Watermark Embedding 84 5.3.3 Watermark Detection and Verification 86 4. Experimental Results and Discussions 87 5.4.1 Bit-rate and Payload Capacity Test 89 5.4.2 Imperceptibility Test 91 5.4.3 Fragility Test 95 5.4.4 Complexity Test 98 Chapter 6 100 A Low Cost Fragile Watermarking Scheme in H.264/AVC Compressed Domain 100 6.1 Introduction 100 6.2 The Proposed Watermarking Scheme 101 6.2.1 Spatial Analysis 104 6.2.2 Temporal Analysis 107 6.2.3 Fragile Watermark Generation 109 6.2.4 Watermark Embedding 110 6.2.5 Watermark Extraction and Verification 111 6.3 Experimental Results and Discussions 113 6.3.1 Imperceptibility Test 115 6.3.2 Bit-rate and Payload Capacity Test 121 6.3.3 Fragility to Tampering Test 123 6.3.4 Complexity Test 126 Chapter 7 128 A Low Complexity Semi-fragile Watermarking Scheme for H.264/AVC Video Authentication 128 7.1 Introduction 128 7.2 The Proposed Watermarking Scheme 130 7.2.1 Content-based Key and Robust Watermark Generation 131 7.2.2 Perceptual Quality and Robustness Enhancement through Spatial Analysis 135 7.2.3 Watermark Embedding 138 7.2.4 Watermark Extraction and Verification and Attack Characterization and Localization 141 7.3. Experimental Results and Discussions 145 7.3.1 Imperceptibility Test 147 7.3.2 Bit-rate Variation Test 153 7.3.3 Robustness Test 154 7.3.4 Complexity Test 159 Chapter 8 161 Conclusions 161 1. Relational Database Watermarking (RDW) 165 2. H.264/AVC Video Watermarking 165 References 167

    [1] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM Syst. J. , vol. 35, no. 3.4, pp.313–336, 1996.
    [2] F. Petitcolas, R. Anderson, MG Kuhn, “Information hiding: a survey,” in Proc. IEEE, special issue on protection of multimedia content, vol. 87, no. 7, Jul. 1995, pp. 1062–1078.
    [3] J. T. Brassil, S. Low, and N. F. Maxemchuk, “Copyright protection for the electronic distribution of text,” in Proc. IEEE, vol. 87, no. 7, Jun. 1999, pp. 1181–1196.
    [4] N. Nikolaidis, and I. Pitas, “Copyright protection of images using robust digital signatures,” in Proc. ICASSP’96, Atlanta, Georgia, vol. 4, May 1996, pp. 2168–2171.
    [5] F. Petitcolas, “Watermarking schemes evaluation,” IEEE Trans. Signal Process., vol. 17, no. 5, pp. 58–64, May 2000.
    [6] I. J. Cox, G. Doerr, and T. Furon, “Watermarking is not cryptography,” in Proc. 5th Int. Workshop, IWDW 2006, Jeju Island, Korea, vol. 4283, Nov. 8-10, 2006, pp. 1-15.
    [7] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Digital Watermarking and Steganography, Morgan Kaufmann Pub., Elsevier Inc., 2008.
    [8] I. J. Cox, J. Kilian, T. Leighton, and T. G. Shamoon, “Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Process., vol. 6, no. 12, pp. 1673–1687, 1997.
    [9]. F. Hartung, and B. Girod. “Watermarking of uncompressed and compressed video,” Signal Process., vol. 66, no. 3, pp. 283-301, 1998.
    [10]. M. Arnold, “Audio watermarking: features, applications and algorithms,” in Proc. 5th IEEE Int. Conf. on Computer and Multimedia and Expo, 2000, pp. 1013-1016.
    [11] W. H. Lin, Y. R. Wang, S. J. Horng, and Y. Pan, “A blind watermarking method using maximum wavelet coefficient quantization,” Expert Systs. with Appl., vol. 36, no. 9, pp. 11509-11516, Nov. 2009.
    [12] W. H. Lin, S. J. Horng, T. W. Kao, P. Fan, C. L. Lee and Y. Pan, “An efficient watermarking method based on significant difference of Wavelet coefficient quantization,” IEEE Trans. Multimedia, vol. 10, no. 5, pp. 746-757, Aug. 2008.
    [13] F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Attacks on copyright marking systems,” in Proc. 2nd Int. Workshop on information Hiding, April 1998, pp. 218- 238.
    [14] R. Agrawal and J. Kiernan, “Watermarking relational databases,” in Proc. 28th Very Large Data Bases VLDB Conf., Hong Kong, China, vol. 28, 2002, pp. 155-166.
    [15] R. Sion, “Proving ownership over categorical data,” in Proc. 20th IEEE Int. Conf. on Data Engineering ICDE, April 2004, pp. 584–596.
    [16] L. Yingjiu, S. Vipin, and S. Jajodia, “A robust watermarking scheme for relational data,” in Proc. 13th Workshop on Information Technology and Systems WITS, 2003, pp. 195–200.
    [17] R. Sion, M. Atallah, S. Prabhakar, “Rights protection for relational data,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 12, pp. 1509-1525. Dec. 2004.
    [18] M. Shehab, E. Bertino, and A. Ghafoor, “Watermarking relational databases using optimization based techniques,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, Jan. 2008.
    [19] V. Pournaghshband, “A new watermarking approach for relational data,” in Proc. 46th Annu. Southeast Regional Conf. on XX, 2008, pp. 127-131,
    [20] Y. Li, H. Guo, and S. Jajodia, “Tamper Detection and Localization for Categorical Data Using Fragile Watermarks,” in Proc. 4th ACM Workshop on Digital Rights Manage. DRM ’04, 2004, pages 73–82.
    [21] D. M. Thodi, and J. J. Rodriguez, “Prediction-error-based reversible watermarking,” in Proc. IEEE Conf. on Image Process., Singapore, Oct. 2004, 1549-1552.
    [22] C. Lin, “Watermarking and digital signature techniques for multimedia authentication and copyright protection”, PhD Dissertation, Columbia University, 2001.
    [23] I. Ahmad, X. Wei, Y. Sun, and Y. Zhang, “Video Transcoding: An Overview of Various Techniques and Research Issues,” IEEE Trans. Multimedia, vol. 7, no. 5, pp. 793-804, Oct. 2005.
    [24] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced video coding, 2003.
    [25] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC Baseline Profile Decoder Complexity Analysis,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 704-716, Jul. 2003.
    [26] S. C. Huang, and S. Y. Kuo, “Optimization of Hybridized Error Concealment for H.264,“ IEEE Trans. Broadcast., vol. 54, no. 3, pp. 499 – 516, Sep. 2008.
    [27] A. Koz and A. A. Alatan, “Oblivious spatio-temporal watermarking of digital video by exploiting the human visual system,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 3, pp. 326–337, Mar. 2008.
    [28] V. Cappellini, F. Bartolini, R. Caldelli, A. De Rosa, A. Piva, and A. Bami, “Robust frame-based watermarking for digital video,” in Proc. 12th Int. Workshop on Database and Expert Syst. Appl., Sep. 2001, pp. 825-829.
    [29] E. T. Lin, “Video and image watermark synchronization,” PhD Dissertation, Purdue University, 2005.
    [30] I. E. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2004.
    [31] A. Golikeri, P. Nasiopoulos, and Z. J. Wang, “Robust digital video watermarking scheme for H.264 advanced video coding standard,” J. Electron. Imaging, vol. 16, no. 4, p. 043008, Dec. 2007.
    [32] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, “Perceptual watermarks for digital images and video,” in Proc. SPIE, San Jose, CA, Jan. 1999, vol. 3567, pp. 40-51.
    [33] M. Noorkami and R. M. Mersereau, “A framework for robust watermarking of H.264-encoded video with controllable detection performance,” IEEE Trans. Inf. Forensics Security, vol. 2, no. 1, pp. 14–23, Mar. 2007.
    [34] G. Qiu, P. Marziliano, A.T.S. Ho, D. He, and Q. Sun, “A hybrid watermarking scheme for H.264/AVC video, “ in Proc. 17th Int. Conf. on Pattern Recognition (ICPR 2004), vol. 4, Aug. 2006, pp. 2353–2356.
    [35] M. Noorkami and R. M. Mersereau, “Digital video watermarking in P-frames with controlled video bit-rate increase,” IEEE Trans. Inf. Forensics Security, vol. 3, no. 3, pp. 441–455, Sep. 2008.
    [36] D. Proefrock, H. Richter, M. Schlauweg, E. Mueller, “H.264/AVC video authentication using skipped macroblocks for an erasable watermark,“ in Proc. SPIE, vol. 5960, 2005, pp. 1480–1489.
    [37] S. K. Kapotas, and A. N. Skodras, “Real time data hiding by exploiting the IPCM macroblocks in H.264/AVC streams,“ J. Real-Time Image Process., vol. 4, no. 1, pp. 33–41, 2009.
    [38] S. M. Kim, S. B. Kim, Y. Hong, and C. S. Won, “Data hiding on H.264/AVC compressed video, “ Int. Conf. Image Analysis and Recognition (ICIAR 2007), Montreal, Canada, LNCS, vol. 4633, 2007, pp. 698–707.
    [39] C. H. Liu, and O. T. C. Chen, “Data hiding in inter and intra prediction modes of H.264/AVC,” IEEE Int. Symp. Circuits and Systems (ISCAS 2008), Seattle, Washington, USA, 2008, pp. 3025-3028.
    [40] Y. Hu, C. T. Zhang, and Y. T. Su, “Information hiding based on intra prediction modes for H.264/AVC,“ IEEE Int. Conf. Multimedia and Expo (ICME 2007), Beijing, China, 2007, pp. 1231–1234.
    [41] G. Yang, J. Li, Y. He, Z. Kang, “An information hiding algorithm based on intra-prediction modes and matrix coding for H.264/AVC video stream,“ Int. J. Electron. and Commun., vol. 65, no. 4, pp. 331–337, Apr. 2011.
    [42] C. C. Wang and Y. C. Hsu, “Fragile watermarking scheme for H.264 video authentication,” Optical Engineering, vol. 49, no. 2, Feb. 2010.
    [43] K. Saadi, A. Bouridane and A. Guessoum, “Combined fragile watermark and digital signature for H.264/AVC video authentication,” EUSIPCO 2009, Scotland, Glasgow 2009.
    [44] T. Kim, K. Park, and Y. Hong, “Video watermarking technique for H.264/AVC,” Optical Engineering, vol. 51, no. 4, Apr. 2012.
    [45] D. Xu, R. Wang, and J. Wang, “A novel watermarking scheme for H.264/AVC video authentication,” Signal Process.: Image Commu., vol. 26, no. 6, Jul. 2011.
    [46] D. Xu, and R. Wang, “Watermarking in H.264/AVC compressed domain using Exp-Golomb code words mapping,” Optical Engineering, vol. 50, no. 9, pp. 267-279, Sep. 2011.
    [47] A. Mansouri, A. Aznaveh, F. Torkamani-Azar, and F. Kurugollu, “A low complexity video watermarking in H.264 compressed domain,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 4, pp. 649-657, Dec. 2010.
    [48] B. Mauro and B. Franco, Watermarking Systems Engineering (Signal Processing and Communications, 21). Boca Raton, FL: CRC Press, Inc., 2004.
    [49] Bruce Schneier, Applied Cryptography, John Wiley, New York, 1996.
    [50] Z. Hu, Z. Cao, J. Sun, “An image based algorithm for watermarking relational databases,” in Proc. Int. Conf. Measuring Technology and Mechatronics Automation ICMTMA '09, vol. 1, April 11-12, 2009, pp. 425-428.
    [51] D. E. Knuth, The Art of Computer Programming: Searching and Sorting, third ed., Addison Wesley, Reading, MA, 1997.
    [52] M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless generalized-lsb data embedding,” IEEE Trans. Image Process., vol. 14, no. 2, , pp. 253-266, Feb. 2005.
    [53] C. D. Vleeschouwer, J. E. Delaigle, and B. Macq, “Circular interpretation of histogram for reversible watermarking,” in Proc. IEEE 4th Workshop on Multimedia Signal Processing, France, Oct. 2001, pp. 345-350.
    [54] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 890-896, 2003.
    [55] A. M. Alattar, “Reversible watermark using the difference expansion of a generalized integer transform,” IEEE Trans. Image Process., vol. 13, no. 8, pp. 1147-1156, 2004.
    [56] G. Gupta, and J. Pieprzyk. “Reversible and blind database watermarking using difference expansion,” in Proc. eForensics, Jan. 2008, pp. 1-6.
    [57] M. S. Hwang, K. F. Hwang, and C.C. Chang, “A time-stamping protocol for digital watermarking, ” Appl. Math. and Comput., vol. 169, no. 2, pp.1276–1284, Oct. 2005.
    [58] J. Chou, Y. Chen, and C. Chan, “Cryptanalysis of Hwang-Chang’s a Time-Stamp Protocol for Digital Watermarking,” IACR Cryptology ePrint Archive, pp. 4-4, 2007.
    [59] R. Housley, W. Ford, W. Polk, and D. Solo. “Internet x.509 public key infrastructure certificate and crl profile” RFC 2459. January 1999.
    [60] Standard specifications for Public Key Cryptography, IEEE standard. 1363-2000, 2000.
    [61] Y. Li, H. Guo, and S. Wang, “A multiple-bits watermark for relational data,” J. Database Manage., vol. 19, no. 3, pp. 1-21, 2008.
    [62] S. Craver, N. Memon, B. L. Yeo, and M. M. Yeung, “Resolving rightful ownerships with invisible watermarking techniques: Limitations, attacks, and implications,” IEEE J. Sel. Areas Comm., vol. 16, no. 4, pp.573–586, 1998.
    [63] H.264 Reference Software Group [Online]. Available: http://www.iphome.hhi.de/suehring/tml/.
    [64] B. Furht and O. Marques, Handbook of Video Databases: Design and Applications. Boca Raton, FL: CRC Press, 2003.
    [65] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986, pp. 434-438.
    [66] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 3rd Edn., Prentice-Hall, Englewood Cliffs ,2008.
    [67] B. Chen, and G. W. Wornell, “Quantization Index Modulation: A Class of Provably Good Methods for Digital Watermarking and Information Embedding,” IEEE Trans. Inf. Forensics Security, vol. 47, no. 4, pp. 1423-1443, May 2001.
    [68] Y. Lee, G. Bell, S. Huang, R. Wang, S. Shyu, “An Advanced Least-Significant-Bit Embedding Scheme for Steganographic Encoding,” in Proc. PSIVT, 2009, pp. 349-360 .
    [69] American National Standard for Telecommunications-Digital Transport of One-Way Video Signals-Parameters for Objective Performance Assessment, ANSI Std. T1.801.03-2003, ANSI, Jul. 2003.
    [70] L. Peter, M. Detlev, N. Matthias, P. Fernando, S. Thomas and W. Thomas, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE Circuits Syst. Mag., no. 3, pp. 7- 28, 2004.
    [71] F. Xiaopeng, L. Yan, and G. Wen, “A novel coefficient scanning scheme for directional spatial prediction-based image compression,” in Proc. Int. Conf. on Multimedia and Expo (ICME ’03), Jul. 2003, pp. II-557–560.
    [72] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncell, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
    [73] B. B. Zhu, M. D. Swanson, and A. H. Tewfik, “When seeing isn’t believing,” IEEE Signal Processing Mag., vol. 21, no. 2, pp. 40-49, Mar. 2004.
    [74] Q. B. Sun, D. J. He, and Q. Tian, “A secure and robust authentication scheme for video transcoding,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 10, pp. 1232–1244, Oct. 2006.
    [75] T. Y. Chen, T. H. Chen, Y. T. Lin, Y. C. Chang, and D. J. Wang, “H.264 Video Authentication Based on Semi-Fragile Watermarking,” in Proc. 08th Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP 2008), Aug. 2008, pp. 659–662.
    [76] D. W. Kim, Y. G. Choi, H.S. Kim, J. S. Yoo, H. J. Choi, Y. H. Seo, “The problems in digital watermarking into intra-frames of H.264/AVC,” Image and Vision Computing, vol. 28, no. 8, pp. 1220–1228, 2010.
    [77] C. Y. Lin, S. F. Chang, “A robust image authentication method distinguishing JPEG compression from malicious manipulation,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 2, pp. 153–168, 2001.
    [78] Xiaojun Qi, and Xing Xin, “A quantization-based semi-fragile watermarking scheme for image content authentication,” J. Visual Commun. and Image Representation, vol. 22, no. 2, pp. 187-200, Feb. 2011.

    QR CODE