簡易檢索 / 詳目顯示

研究生: 林世昌
Shih-Chang Lin
論文名稱: 共平面結構之分佈反饋式雷射與電致吸收調變器積體化的元件與製程設計
Design of Device Structure and Fabrication Procedures for Integrated Distributed-Feedback Laser with Electro-Absorption Modulator on Semi-Insulating Substrate
指導教授: 李三良
San-liang Lee
口試委員: 邱逸仁
Yi-jen Chiu
曹恆偉
Hen-wai Tsao
劉政光
Cheng-kuang Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 積體化分佈反饋式雷射電致吸收調變器量子井混合
外文關鍵詞: DFB Laser, EAM, Integrate, Distributed-Feedback Laser, QWI
相關次數: 點閱:234下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要之研究為利用量子井混合效應來設計製作雷射與電
    吸收調變器共平面結構之積體化元件,使其能運用在高速的光通訊系
    統中。主動層材料為磷砷化銦鎵(InGaAsP)的材料。發光波段主要
    設計在1550 nm。
    在元件製作的結構上,為了達到高速傳輸(>40 Gbits/s),元件的
    寄生電容要越小越好,而行波式電極克服了集總式電極所產生的高電
    容電阻效應,可達到更高速的調變,故本研究選擇行波式共平面結構
    來製作。而經由模擬電吸收調變器吸收頻譜的分析,為了達到傳輸時
    較低的傳輸損耗(<10 dB)與較高的信號明滅比(>15 dB),分析出
    來雷射區與電吸收調變區最佳的能隙波長偏移量為52 nm至64 nm之
    間,在操作偏壓為1.2 伏特的條件下,信號明滅比可達到18 dB。而
    藉由本實驗所設計出的量子井混合效應造成的能隙偏移量,至多可達
    98 nm左右的偏移,足以達成本實驗所要求之最佳能隙偏移值。
    本論文亦以單一主動層(Single Active Layer)技術設計一對照組
    與量子井混合技術比較。此技術是直接將布拉格波長設置在電吸收調
    變器吸收邊緣上,不需額外的蝕刻或離子佈值。經由模擬分析,雷射
    主動層結構之發光波段預估可達到1600 nm。


    The quantum well intermixing(QWI)technique is used to fabricate
    the integrated device that combines a distributed feedback laser(DFB)
    and an electro-absorption modulator(EAM) on semi-insulating substrate
    for very high speed fiber communication system(>40 Gbits/s). The
    active layers of quantum wells are made of InGaAsP materials, and the
    lasing wavelength is designed to be 1550 nm.
    In the device structure, the traveling-wave(TW)structure is better
    than the lumped structure due to its lower parasitic capacitance, which
    leads to a high modulation bandwidth. We choose the traveling-wave
    coplanar structure to realize the DFB/EAM integrated devices.
    To obtain lower transmission loss (< 10 dB) and higher extinction
    ratio(>15 dB), the EAM absorption spectrum is analyzed, and the
    optimal blue shift value is approximately 52 to 64 nm. In this range of
    blue shift wavelength, a high extinction ratio(>18dB)can be obtained for
    1.2 V driving voltage. The maximum blue shift value can reach to 98 nm
    for the QWI annealing test.
    For comparisons with the QWI device, the identical active layers
    and used for realizing the integrated DFB/EAM laser, the key concept of
    this technique is to locate the lasing wavelength of the DFB at the
    absorption edge of EAM. Therefore, we should make sure that the laser
    could lase at the wavelength of absorption edge of the EAM. From the
    simulation results, the lasing wavelength may exceed 1600 nm.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 VI 第一章 導論 1 1-1光纖通訊的發展趨勢 1 1-2 電致吸收調變器雷射 2 1-3 行波式電極與集總式電極 5 1-4 電吸收調變器與雷射積體化整合技術 7 1-5研究動機 13 1-6 論文架構 15 第二章 基本理論 16 2-1 以量子井混合技術製作雷射與電吸收調變器積體化元件之文獻探討 16 2-2 電吸收調變器基本原理 18 2-3 行波式電吸收調變器共平面波導基本原理 22 2-4 光傳輸損耗與調變器長度 24 2-5 分佈反饋式雷射基本原理 25 第三章 元件結構設計與模擬 28 3-1前言 28 3-2分布回饋式雷射特性之最佳條件模擬 28 3-3 電吸收調變器吸收頻譜之分析 34 3-4 電吸收調變器吸收邊緣位移量之最佳化 36 3-5 電吸收調變器共平面電極之設計 44 3-6 能隙收縮效應對增益波長之位移量 47 第四章 元件製作與流程 52 4-1光罩設計 52 4-2製作流程 55 第五章 製作成果與結論 71 5-1量子井混合熱回火測試結果與光柵製作結果 71 5-2 結論 74 5-3未來研究方向 75 參考文獻 76

    [1]M. Arumugam, “Optical fiber communication—an overview,” J. Phys., vol. 57, pp. 849-869, 2001
    [2]T. L. Koch and J. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” IEEE Electron Lett., vol. 20, pp. 1038-1040, 1984.
    [3]S. Zhang, “Traveling-wave electro-absorption modulators,” University of California, Santa Barbara, Ph. D. Dissertation, 1999.
    [4]J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, And K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” IEEE J. Lightwave technol., vol. 6, pp. 793-808, 1988.
    [5]Q. Zhao, J. Q. Pan, J. Zhang, B. X. Li, F. Zhou, B. J. Wang, L. F. Wang, J. Bian, L. J. Zhao, W. Wang, “Monolithic integration of electro-absorption modulator and DFB laser for 10-Gb/s transmission,” Optics Communications 260.,pp.666-669,2006.
    [6]H. Fukano, T. Yamanaka, M. Tamura, H. Nakajima, Y. Akage, Y. Kondo and T. Saitoh, “40 Gbits/s electro-absorption modulators with 1.1V driving voltage,” IEEE Electron Lett., vol. 40 , pp.1144-1146, 2004.
    [7]T. Ido, H. Sano, M. Suzuki, S. Tanaka, and H. Inoue, “Ultra-high-speed multiple-quantum-well electro-absorption optical modulators with integrate waveguides,” IEEE J. Lightwave Technol., vol. 14, pp. 2026-2034, 1996.
    [8]K. Sato, I. Kotaka, K. Wakita, Y. Kondo and M. Yamamoto, “Strained-InGaAsP MQW electro-absorption modulator integrated DFB laser,” IEEE Electron. Lett., vol. 129, pp. 1087-1089, 1993.
    [9]H. Fukano, Y. Akage, Y. Kawaguchi, Y. Suzaki, K. Kishi, T. Yamanaka, Y. Kondo, and H. Yasaka, “Low chirp operation of 40 Gbit/s electro-absorption modulator integrated DFB laser module with low driving voltage,” IEEE Quantum Electron., vol. 13, pp. 1129-1134, 2007.
    [10]Q. Zhao, J.Q. Pan, J. Zhang, B.X. Li, F. Zhou, B.J. Wang, L.F. Wang, J. Bian, L.J. Zhao, W. Wang, “MQW electro-absorption modulator integrated DFB laser modules for high-speed transmission,” Semicond. Sci. Technol., vol. 21, pp. 734-739, 2006.
    [11]A. Ramdane. F. Devaux, N. Souli, D. Delprat, and A. Ougazzaden, “Monolithic integration of multiple-quantum-well lasers and modulators for high-speed transmission,” IEEE Quantum Electronics., vol. 2, pp. 326-335, 1996.
    [12]S. Tarucha. H. Kobayashi, Y. Horikoshi and H. Okamoto, “Carrier induced energy-gap shrinkage in current injection GaAs/AlGaAs MQW hetero-structures,” Japan. Appl. Phys., vol. 23, pp. 874-878, 1984.
    [13]J. H. Marsh, “Quantum well intermixing,” Semlcond. Sci.Technol., vol. 8, pp. 1136-1155, 1993

    [14]D. J. Han, J. S. Niu , H. L. Zhu , H. Q. Zhu and W. R Zhuang, “ Impurity-free vacancy diffusion technique for InGaAsP/InP multiple quantum well laser structure,” Chin. Phys. Lett., vol. 18, pp. 100-102, 2001.
    [15]J. W. Raring, L. A. Johanssont, E. J. Skogent, M. N. Sysakt, H. N. Poulsent, S. P. DenBaars, and L. A. Coldren, “Low drive voltage, negative chirp 40 Gbits/s EA-modulator/widely-tunable laser transmitter, using quantum-well-intermixing,” OFC ., PDP26, pp 1-3, 2006.
    [16]L. Hou, Z. Ren, S. Yu, H. Zhu, and W. Wang, “Electro-absorption-modulated DFB laser integrated with dual-core spot-size converters,” J. Lightwave Technol., vol. 25, pp. 239-248, 2007.
    [17]G. L. Li, P. K. L. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave. Technol., vol. 21, pp. 2204-2206, 2003.
    [18]G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electro-absorption modulator design and analysis,” IEEE Transactions On Microwave Theory And Technique, vol. 47, pp.1177-1183, 1999.
    [19]C. E. Zah. R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadaki, D. M. Hwang, M. A. Koza, T. P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance un-cooled 1.3-m AlxGayIn1-x-yAs/InP strained-layer quantum-well lasers for subscriber loop applications,”IEEE Quantum Electron., vol. 30, pp. 511-521, 1994.
    [20]H. Fukano, T. Yamanaka, M. Tamura, and Y. Kondo,“Very-low-driving-voltage electro-absorption modulators operating at 40 Gb/s, IEEE J. Lightwave Technol., vol. 24, pp. 2219-2224, 2007.
    [21]G. Muller, D. Hofmann, P. Kipfer, F. Mose1,“The preparation of Fe-doped and nominally un-doped semi-insulating InP,”IEEE, pp. 21-24, 1990.
    [22]P. Gerlach, M. Peschke, T. Wenger, B. K. Saravanan, C. Hanke, S. Lorch, R. Michalzik,“Complex-coupled distributed feedback laser monolithically integrated with electro-absorption modulator and semiconductor optical amplifier,” Proc. SPIE., vol 6183. pp. 61831J-1-61831J-9, 2006.
    [23]鄭宏祥,“有機基板上的貫穿孔之電性特性分析與模型化,”碩士論文,國立中山大學, 2007
    [24]Y. J. Chiu, H. F. Chou, V. Kaman, P. Abraham, and J. E. Bowers,“ High extinction ratio and saturation power traveling-wave electro-absorption modulator,” IEEE Photon. Technol. Lett., vol. 14, pp. 792-794. 2002.
    [25]S. Tarucha. S. Tarucha, H. Kobayashi, Y. Horikoshi, and H. Okamoto, “Carrier induced energy-gap shrinkage in current injection GaAs/AlGaAs MQW hetero-structures,” Japan. Appl. Phys., vol. 23, pp. 874-878, 1984.
    [26]S. H. Park, J. I. Shim, K. Kudo, M. Asada, and S. Arai, “Bandgap shrinkage in GaInAs/GaInAsP/InP multi-quantum well lasers,” Japan. Appl. Phys., vol. 72, pp. 279-281, 1992.
    [27]T. Kn&ouml;dl, C. Hanke, B. K. Saravanan, M. Peschke, R. Schreiner, and B. Stegm&uuml;ller, “Integrated 1.3 μm InGaAlAs-InP laser–modulator with double–stack MQW layer structure,” Infineon Technologies AG., vol. 5451, pp 1-7. 2004.

    QR CODE