簡易檢索 / 詳目顯示

研究生: 莊凱竣
Kai-Chun Chuang
論文名稱: 光固化3D列印具可撓性與圖騰化石墨烯奈米複合材料感測電極於心電圖與肌電圖之應用
Photo-Curing 3D Printing Flexible and Pattered Resin/Graphene Nano-composite for ECG and EMG Electrode Base Plate Applications
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
Shen-Tarng Chiou
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 3D列印光固化微針結構石墨烯心電圖肌電圖
外文關鍵詞: 3D printing, Photo-curing, Microneedle structure, Graphene, Electrocardiography(ECG), Electromyogram (EMG)
相關次數: 點閱:236下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D列印近年發展一日千里,其研發周期短、高度客製化、成本低廉以及高品質的特性已為創客文化帶來新的革命,如今隨著各項專利陸續到期,3D列印廣泛受到學術界和業界的關注,開始投入資源在這項新興技術上。本研究透過選用特定丙烯酸酯單體以及寡聚體,隨著調控其中比例,配置出一款具備拉伸性、回彈性的樹脂,接著添加石墨烯使彈性光固化樹脂具備導電性並提升其柔韌性,並憑藉光固化3D列印優勢,印製各種具有表面微針結構之樣品,最後成功應用於感測人體訊號之元件上。為了改善石墨烯易於傾向團聚的特性,使用兩種方法將其進行改質,分別為添加苯乙烯馬來酸酐以其上苯環與石墨烯產生π-π物理吸附之特性以及添加聚醚胺可與石墨烯產生空間位阻之特性來進行比較,接著也進行將苯乙烯馬來酸酐與聚醚胺接枝,找出具有最佳分散性之種類和比例,與光固化樹脂進行混合,製成光固化樹脂/石墨烯的奈米複合材料,並隨著固含量的添加,取得最佳導電性能及機械強度的比例。最後,印製有別於傳統網版印刷之平面底板,實驗中探討不同長徑比、不同間隙之表面微針結構對於接觸皮膚之差異,應用於量測人體心電圖(ECG)以及肌電圖(EMG)的訊號,成功將3D列印高度客製化且可印製多元複雜結構之特性與監控人體生理狀態的智慧衣作嶄新的連結。


    3D printing has developed abstract rapidly in recent years. Its short research cycle, high degree of customization, low cost, and high quality have brought a new revolution to the maker culture. Now, as various patents have expired, 3D printing has been widely accepted the attention of academia and industry which have invested resources in this emerging technology. In this study, by selecting and adjusting the ratio of specific acrylate monomers and oligomers, a resin with stretchability and elasticity was configured, and then graphene was added to make the elastic photo-curing resin conductive and also improve its flexibility. With the advantages of photo-curing 3D printing, various samples with surface micro-needle structure were printed, and finally successfully applied to components that sense human signals. In order to improve the tendency of graphene which tend to agglomerate, two methods are used to modify it. They are the addition of styrene maleic anhydride to produce π-π physical adsorption on the benzene ring with graphene, and the addition of polyetheramine can produce the steric hindrance characteristics of graphene. Try to find the type and the ratio with the best dispensability and mix it with the photo-curing resin to make photo-curing resin/graphene nanocomposite, and therefore get the best electrical conductivity and mechanical strength. Finally, different from traditional screen printing which prints flat plate, in this experiment, we design surface microneedle structures with different aspect ratios and different gaps contacting with the skin, and it can be used to measure human electrocardiography(ECG) and electromyogram(EMG) signals. In the end, we successfully connect 3D printing with highly customized and printable features of multiple complex structures and smart clothing that monitors the physiological state of the human body.

    摘要 i Abstract iii 誌謝 v 目錄 vi 圖目錄 x 表目錄 xiv 第一章、緒論 1 1.1前言 1 1.2介紹3D列印 2 1.2.1 3D列印之特色優勢 2 1.2.2 3D列印技術與應用 3 1.2.3 3D列印發展歷程及各項成型機制 4 1.3光聚合固化技術 12 1.3.1 光聚合固化技術發展 12 1.3.2 光聚合固化技術材料簡介 14 1.3.3 光聚合固化技術優缺點分析 16 1.4 石墨烯簡介 17 1.4.1石墨烯的結構性質 17 1.4.2石墨烯的製備方法 19 1.5 智慧衣與生醫訊號處理 21 1.5.1智慧衣介紹 21 1.5.2智慧衣用途 22 1.5.3人體肌電圖 22 第二章、文獻回顧 24 2.1 新興光固化3D列印技術 24 2.2 光固化樹脂製備 26 2.2.1 彈性光固化樹脂 26 2.2.2 記憶型光固化樹脂 27 2.3碳材於3D列印之應用 29 2.4碳材的分散 32 2.4.1苯乙烯馬來酸酐分散石墨烯 32 2.4.2聚醚胺分散石墨烯 33 2.5 3D列印人體感測元件 34 第三章、實驗方法 36 3.1實驗材料與設備儀器 36 3.1.1實驗材料 36 3.1.2實驗設備及分析儀器 38 3.2實驗流程圖 43 3.3實驗步驟 43 3.3.1光固化樹脂配置 43 3.3.2 分散劑馬來酸酐-酰胺(SMA-Amide)的合成 44 3.3.3 奈米複合光固化樹脂配置 45 3.3.4 3D列印成型機制 46 第四章、結果與討論 49 4.1彈性光固化樹脂配置 49 4.1.1彈性光固化樹脂列印參數設定 49 4.1.2彈性光固化樹脂黏度測試 51 4.1.3彈性光固化樹脂機械強度及交聯密度之相關性 52 4.2改質石墨烯及分散效果之探討 58 4.2.1以苯乙烯馬來酸酐與聚醚胺改質石墨烯 58 4.2.2改質石墨烯穿透度及TEM圖探討分散性 59 4.2.3苯乙烯馬來酸酐-酰胺對分散性之影響 62 4.3奈米複合樹脂性質測試 68 4.3.1 奈米複合樹脂黏度測試 68 4.3.2奈米複合樹脂機械強度測試 69 4.3.3 3D列印表面結構設計 71 4.3.4壓縮疲勞測試及比較 73 4.4光固化奈米複合材料應用於訊號感測元件 75 4.4.1電極底板感測元件製備 75 4.4.2不同條件下量測EMG訊號 75 4.4.3 運動前後ECG訊號量測 76 第五章、結論 78 參考文獻 79

    1. Zheng, X.; Deotte, J.; Alonso, M. P.; Farquar, G. R.; Weisgraber, T. H. Design and Optimization of A Light-Emitting Diode Projection Micro-Stereolithography Three-Dimensional Manufacturing System, Rev. Sci. 2012, 83, 125001.
    2. Zheng, X. Y.; Lee, H.; Weisgraber,T. H.; Shusteff, M.; DeOtte, J.; Duoss, E. B.; Kuntz, J. D.; Biener, M. M.; Ge, Q.; Jackson, J. A. Ultralight, ultrastiff mechanical metamaterials, Science, 2014, 344, 1373-1377.
    3. Zheng, X.; Smith, W.; Jackson, J.; Moran, B.; Cui, H.; Chen, D.; Ye, J.; Fang, N.; Rodriguez, N.; Weisgraber, T. Multiscale Metallic Metamaterials, Nat. Mater. , 2016, 15, 1100-1106.
    4. MacCurdy, R.; Katzschmann, R.; Kim, Y.; Rus, D. A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids, IEEE, 2016, 55, 1537-1545.
    5. Bryan, N. P.; Thomas, J. W.; Huichan, Z.; Robert, F. S. A Review of 3D printing Processes and Materials for Soft Robotics, Bioinspir Biomim, 2015, 26, 1345-1361.
    6. Bartlett, N. W.; Tolley, M. T.; Overvelde, J. T. B.; Weaver, J. C.; Mosadegh, B.; Bertoldi, K.; Whitesides, G. M.; Wood, R. J. A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion, Science, 2015, 349, 161-176.
    7. Pouya, C.; Overvelde, J. T. B.; Kolle, M.; Aizenberg, J.; Bertoldi, K.; Weaver, J. C.; Vukusic, P. Characterization of a Mechanically Tunable Gyroid Photonic Crystal Inspired by The Butterfly Parides Sesostris, Adv. Opt. , 2016, 4, 99-105.
    8. Sun, C.; Fang, N.; Wu, D. M.; Zhang, X. Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask, Sens. Actuator A Phys., 2005, 121, 113-120.
    9. Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D. Additive Manufacturing Continuous Liquid Interface Production of 3D Objects, Science, 2015, 347, 1349-1352.
    10. Ge, Q.; Sakhaei, A. H.; Lee, H.; Dunn, C. K.; Fang, N. X.; Dunn, M. L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers, Sci. Rep., 2016, 6, 31110.
    11. Zarek, M.; Layani, M.; Cooperstein, I.; Sachyani, E.; Cohn, D.; Magdassi, S. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices, Adv. Mater, 2016, 22, 4449-4454.
    12. Mosadegh, B.; Polygerinos, P.; Keplinger, C.; Wennstedt, S.; Shepherd ,R. F.; Gupta, U.; Shim, J.; Bertoldi, K.; Walsh, C. J.; Whitesides, G. M. Pneumatic Networks for Soft Robotics That Actuate Rapidly, Adv. Funct. Mater, 2014, 24, 2163-2170.
    13. Yang, D.; Mosadegh, B.; Ainla, A.; Lee, B.; Khashai, F.; Suo, Z. G.; Bertoldi, K.; Whitesides, G. M. Buckling of Elastomeric Beams Enables Actuation of Soft Machines, Adv. Mater, 2015, 41, 6323-6327.
    14. Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A..; Whitesides, G. M. Camouflage and Display for Soft Machines, Sci., 2012, 337, 828-832.
    15. Roche, E. T.; Fabozzo, A.; Lee, Y.; Polygerinos, P.; Friehs, I.; Schuster, L.; Whyte, W.; Berazaluce, A. M. C.; Bueno, A.; Lang, N.; Pereira, M. J. N.; Feins, E.; Wasserman, S. A light-reflecting balloon catheter for atraumatic tissue defect repair, Sci. Transl. Med, 2015, 7, 306-321.
    16. Asbeck, A. T.; Rossi, S. M. M. De; Galiana, I.; Ding, Y.; Walsh, C. J. Stronger, Smarter, Softer: Next Generation Wearable Robots, Sci., 2014, 21, 22-33.
    17. Petrick, I.J.; Simpson, T.W. 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition. Research-Technology Management, Economics, 2015, 56, 12-16.
    18. Karunakaran, K.P.; Bernard, A.; Suryakumar, S.; Dembinski, L.; Taillandier, G. Rapid Manufacturing of Metallic Objects, Rapid Prototyping Journal, 2012, 18, 264-280.
    19. Levy, G.N.; Schindel, R.; Kruth, J.P. Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (Lm) Technologies, CIRP Annals, 2003, 52, 589-609.
    20. Standard Terminology for Additive Manufacturing Technologies, 2012, No. F2792-12a.
    21. Vayre, B.; Vignat, F.; Villeneuve, F. Metallic, Additive Manufacturing: State-of-The-Art Review and Prospects, Mech. Ind. , 2012, 13, 89-96.
    22. Turner, B.N.; Strong, R.S.; Gold, A. A Review of Melt Extrusion Additive Manufacturing Processes, 2014, 20, 192–204.
    23. Ahn, S. H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P. K. Anisotropic Material Properties of Fused Deposition Modeling ABS, Rapid Prototyp. J., 2002, 8, 248-257.
    24. Feng, W.; Fuh, J.Y.H.; Wong, Y.S. Development of A Drop-On-Demand Micro Dispensing System. Mater. Sci. Forum, 2006, 30, 505-507.
    25. Mendez, P. F.; Eagar, T. W. F.; Sonin, A. A. Precise Deposition of Molten Microdrops: The Physics of Digital Microfabrication, Proc. R. Soc., 2003, 444, 533–554.
    26. Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies. 2010.
    27. Leon, A. C.; Qiyi, C.; Napolabe, B.P.; Jerome, O.; Jill, M.; Rigoberto, C. High Performance Polymer Nanocomposites for Additive Manufacturing Applications, React Funct. Polym., 2016, 103, 141-155.
    28. Manapat, J. Z.; Chen, Q.; Ye, P.; Advincula, R. C. 3D Printing of Polymer Nanocomposites via Stereolithography. Macromol. Mater. Eng., 2017, 302, 1600553.
    29. Nandwana, P.; Elliott, AM.; Siddel, D.; Merriman, A.; Peter, H.; Babu, S. Powder Bed Binder Jet 3D Printing of Inconel 718: Densification, Microstructural Evolution and Challenges, Curr. Opin. Solid State Mater. Sci., 2017, 21, 207-218.
    30. Calignano, F.; Manfredi, D.; Ambmbrosio, E. P.; Biamino, S.; Lombmbardi, M.; Salmi, A.; Minetola, P.; Fino, P., Overview on Additive Manufacturing Technologies, 2017, Sci., 105, 593-612.
    31. Dudek, P.; Rapacz-Kmita, A. Rapid Prototyping: Technologies, Materials and Advances. Arch. Metall. Mater. , 2016, 61, 891-896.
    32. Hull, C. (UVP, Inc.) Apparatus for Production of Three-Dimensional Objects by Stereolithography. U.S. Patent 4575330, 1986.
    33. Ahn, B. U.; Lee, S. K.; Lee, S. K.; Jeong, H. M.; Kim, B. K. High Performance UV Curable Polyurethane Dispersions by Incorporating Multifunctional Extender. Prog. Org. Coat., 2007, 60, 17-23.
    34. Bowman, C.N.; Kloxin, C. J. Toward An Enhanced Understanding and Implementation of Photopolymerization Reactions. AIChE J., 2008, 54, 2775-2795.
    35. Corcione, C. E.; Cataldi, A.; Frigione, M. Measurements of Size Distribution Nanoparticles in Ultraviolet-Curable Methacrylate-Based Boehmite Nanocomposites. J. Appl. Polym. Sci., 2013, 128, 4102-4109.
    36. Hazan, Y.; Thänert, M.; Trunec, M.; Misak, J. Robotic Deposition of 3D Nanocomposite and Ceramic Fiber Architectures via UV Curable Colloidal Inks, J. Eur. Ceram. Soc., 2012, 32, 1187-1198.
    37. Lin, S. H.; Hsiao, Y. N.; Hsu, K. Y. Preparation and Characterization of Irgacure 784 Doped Photopolymers for Holographic Data Storage at 532 nm, J. Opt., 2009, 024012.
    38. Haitao, L.; Jianhua, M. Study on Nanosilica Reinforced Stereolithography Resin, J. Reinf. Plast. Compos., 2009, 29, 909-920.
    39. Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-Enes: Chemistry of The Past with Promise for The Future. Int J Polym Sci, 2004, 42, 5301-5338.
    40. 鄭正元(主編)(民106)。3D列印:積層製造技術與應用。台灣:全華圖書。.
    41. Tumbleston, J.R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D. Continuous Liquid Interface Production of 3D Objects. Sci. 2015,347, 1349-1352.
    42. Wesley, M. C.; Carvalho, M. J. Development of Acrylate-Based Material Using A Multivariable Approach: Additive Manufacturing Applications. Rapid Prototyp J, 2014, 20, 121-132.
    43. Novoselov, K. S.; Jiang, D. Two-Dimensional Atomic Crystals, Rapid Prototyp J, 2005, 102, 10451-10453.
    44. Nguyen, T. H.; Zhang, Z.; Mustapha, A.; Li, H.; Lin, M. Use of Graphene and Gold Nanorods As Substrates for The Detection of Pesticides by Surface Enhanced Raman Spectroscopy, J. Agric. Food Chem., 2014, 62, 10445-10451.
    45. He, Y.; Lu, G.; Shen, H.; Cheng, Y.; Gong, Q. Strongly Enhanced Raman Scattering of Graphene by A Single Gold Nanorod, Appl. Phys. Lett., 2015, 107, 053104,.
    46. Geim, A. K.; Novoselov, K. S. The Rise of Graphene, in Nanoscience and technology, Catal. Sci. Ser., 2010, 45,11-19,.
    47. Chen, S.; Cheng, B., Ding, C. Synthesis and Characterization of Poly (Vinyl Pyrrolidone)/Reduced Graphene Oxide Nanocomposite, J. Macromol Sci. Phys., 2015, 2, 481-491.
    48. Liu, X.; Cao, L.; Song, W.; Ai, K.; Lu, L. Functionalizing Metal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection of Aromatic Molecules by Surface-Enhanced Raman Spectroscopy, ACS Appl. Mater. Interfaces, 2011, 3, 2944-2952.
    49. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide, Chem. Soc. Rev., 2010, 39, 228-240.
    50. Yu, H.; Zhang, B.; Bulin, C.; Li, R.; Xing, R. High-Efficient Synthesis of Graphene Oxide Based on Improved Hummers Method, Sci. Rep., 2016, 12, 36138-36143.
    51. Cote, L. J.; Kim, J.; Tung, V. C.; Luo, J.; Kim, F.; Huang, J. Graphene Oxide As Surfactant Sheets, Pure Appl. Chem., 2010, 83, 95-110.
    52. Patel, D. K.; Sakhaei, A. H.,; Layani, M.,; Zhang, B.,; Ge, Q. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing, Adv. Mater., 2017, 29, 1606000.
    53. Choonga, Y.; Saeed, M.; Hengky, E. 4D Printing of High Performance Shape Memory Polymer Using Stereolithography, Mater. Des., 2017, 126, 219-225.
    54. Zhang, D.; Chi, B.; Li, B.; Gao, Z.; Du, Y. Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing, Synth Met, 2016, 217, 79-86.
    55. Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Mark, C. H.; Shah, R. N. Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications, ACS Nano, 2015, 9, 4636-4648.
    56. Wang, Y.; He, M.; Cheng, J. J.; Zhang, S. Synthesis of Styrene Maleic Anhydride Copolymer Grafted Graphene and Its Dispersion in Aqueous Solution, RSC Adv., 2018, 8,41484-41490.
    57. Mehrdad, O. G.; Aziz, A. K.; Hossein B. Epoxy Networks Possessing Polyoxyethylene Unites and Loaded by Jeffamine Modified Graphene Oxide Nanoplatelets , Prog. Org. Coat., 2019, 134, 264-271.
    58. Zhou, L.; Gao, Q.; Fu, J.; Chen, Q.; Zhu, J.; Sun, Y.; He, Yong. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers, ACS Appl. Mater. Interfaces, 2019, 11, 23573–23583.

    無法下載圖示 全文公開日期 2026/02/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE