簡易檢索 / 詳目顯示

研究生: 陳婕誼
Chieh-Yi CHEN
論文名稱: 氮化鎵成長於石墨烯/碳化矽基板之研究
Growth of GaN on graphene/SiC substrate
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 葉旻鑫
Min-Hsin Yeh
張國仁
Kuo-Jen Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 氮化鎵石墨烯碳化矽拉曼光譜原子力顯微鏡掃描電子顯微鏡
外文關鍵詞: GaN, Graphene, SiC, Raman Spectum, AFM, SEM
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 第1章、 動機與目的 1 1.1 前言 1 1.2 動機與目的 3 第2章、 文獻回顧 5 2.1 石墨烯製備方法 6 2.2 利用石墨烯/碳化矽基板成長氮化鎵薄膜 25 第3章、 實驗步驟方法 31 3.1 實驗流程 31 3.2 實驗設備簡介 32 3.2.1 電漿輔助化學氣相沉積 32 3.2.2 熱蒸鍍機 34 3.2.3 低壓化學氣相沉積系統 35 3.2.4 拉曼光譜 36 第4章、 結果與討論 41 4.1 以鎳金屬催化劑技術於碳化矽基板成長石墨烯 41 4.1.1 鎳金屬厚度對石墨烯品質之影響 41 4.1.2 製程溫度對石墨烯品質之影響 46 4.2 以類鑽碳固態碳源技術於碳化矽基板成長石墨烯 49 4.2.1 類鑽碳含氫量對石墨烯品質之影響 49 4.2.2 類鑽碳厚度對石墨烯品質之影響 50 4.2.3 類鑽碳膜轉換成石墨烯過程研究 52 4.2.4 低溫成長對石墨烯品質之影響 54 4.3 氮化鎵成長於石墨烯/碳化矽基板 56 第5章、 結論 59 第6章、 參考資料 62

    Roccaforte, F. et al. Microelectronic Engineering Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 187–188, 66–77 (2018).
    [2] Schaich, F., Wild, T., Chen, Y. &Ag, A. Waveform contenders for 5G – suitability for short packet and low latency transmissions. (2014).
    [3] Lema, M. A. et al. Business Case and Technology Analysis for 5G Low Latency Applications. 3536, 1–18 (2017).
    [4] Schulz, P. et al. Latency Critical IoT Applications in 5G : Perspective on the Design of Radio Interface and Network Architecture. 70–78 (2017).
    [5] Ishikawa, H. et al. Thermal stability of GaN on (111) Si substrate. 190, 178–182 (1998).
    [6] Contreras, O., Bertram, F., Kohn, E. &Krost, A. MOVPE growth of GaN on Si (111) substrates. 248, 556–562 (2003).
    [7] Pomeroy, J. W. et al. dimensional Raman thermography mapping Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping. 083513, (2014).
    [8] Felbinger, J. G. et al. Comparison of GaN HEMTs on Diamond and SiC Substrates. 28, 948–950 (2007).
    [9] Sun, H. et al. applications Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications. 111906, (2015).
    [10] Gan, T. &Gan, H. Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High- Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer. 316,
    [11] Kozawa, T. et al. Thermal stress in GaN epitaxial layers grown on sapphire substrates. 4389, (2012).
    [12] Novoselov, K. S. et al. Two-dimensional atomic crystals. 102, 10451–10453 (2005).
    [13]Morozov, S.V et al. Strong Suppression of Weak Localization in Graphene. 016801, 7–10 (2006).
    [14]Ponomarenko, L. A. et al. Chaotic Dirac Billiard in Graphene Quantum Dots. 356–358 (2008).
    [15]Chandramohan, S. et al. Impact of Interlayer Processing Conditions on the Performance of GaN Light-Emitting Diode with Specific NiOx / Graphene Electrode. (2013).
    [16] Yan, Z., Liu, G., Khan, J. M. &Balandin, A. A. of high-power GaN transistors. Nat. Commun. 3, 827–828 (2012).
    [17] Raimond, J. M., Brune, M., Computation, Q., Martini, F.De &Monroe, C. Electric Field Effect in Atomically Thin Carbon Films. 306, 666–670 (2004).
    [18] Pacilé, D., Meyer, J. C., Girit, Ç. Ö. &Zettl, A. The two-dimensional phase of boron nitride : Few-atomic-layer sheets and suspended membranes The two-dimensional phase of boron nitride : Few-atomic-layer sheets. 133107, 1–4 (2008).
    [19] Graphene, E. et al. Electronic Confinement and. 312, 1191–1197 (2006).
    [20] Heer, W. A.De et al. Epitaxial graphene. 143, 92–100 (2007).
    [21] Tanaka, S., Morita, K. &Hibino, H. Anisotropic layer-by-layer growth of graphene on vicinal SiC ( 0001 ) surfaces. 2–5 (2010).
    [22] Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. 448, 457–460 (2007).
    [23] Pei, S. &Cheng, H. The reduction of graphene oxide. Carbon N. Y. 50, 3210–3228 (2011).
    [24] Chen, X. &Liu, Y. Chem Soc Rev Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. (2016).
    [25] Li, X., Cai, W., Colombo, L. &Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).
    [26] Manuscript, A. Ac ce d M us pt. (2018).
    [27] Ru, M. H. et al. Direct Low-Temperature Nanographene CVD Synthesis over a Dielectric Insulator. 4,
    [28] Bhaviripudi, S., Jia, X., Dresselhaus, M. S. &Kong, J. Role of Kinetic Factors in Chemical Vapor Graphene Using Copper Catalyst. 4128–4133 (2010).
    [29] Choi, J. et al. Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition.
    [30] Wei, D. et al. Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices ** Angewandte. 1–7 (2013).
    [31] Juang, Z., Zhong, Y., Chen, F. &Li, L. Substrates by Chemical Vapor Deposition. 3612–3616 (2011).
    [32] Suenaga, K. &Chiu, P. Remote Catalyzation for Direct Formation of Graphene Layers on Oxides. (2012).
    [33] Kim, H. et al. Copper Vapor-Assisted Chemical Vapor Deposition for High Quality and Metal-Free Single Layer Graphene on Amorphous SiO2 Substrate. (2013)
    [34]Wang, D. et al. Scalable and Direct Growth of Graphene Micro Ribbons on Dielectric Substrates. (2013).
    [35]Dahal, A. &Batzill, M. Graphene-nickel interfaces: A review. Nanoscale 6, 2548–2562 (2014).
    [36] Sung, C. &Taib, M. Reactivities of Transition Metals with Carbon : Implications to the Mechanism of Diamond Synthesis Under High Pressure. 15, 237–256 (1997).
    [37] Zhang, Y. et al. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 1, 3101–3107 (2010).
    [38] Losurdo, M., Giangregorio, M. M., Capezzuto, P. &Bruno, G. Graphene CVD growth on copper and nickel : role of hydrogen in kinetics and structure. 20836–20843 (2011).
    [39] Growth, L., Vapor, C., Using, D. &Sources, L. C. Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. 3385–3390 (2011).
    [40].Yao, M. et al. Transparent , superhard amorphous carbon phase from compressing glassy carbon. 021916, 0–4 (2014).
    [41] Ahn, Y., Kim, J., Ganorkar, S., Kim, Y. &Kim, S. polymer residues. 6, 69–76 (2016).
    [42] Sun, Z. et al. Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010).
    [43] Pham-huu, C., Banhart, F. &Rodrı, J. A. Graphene Growth by a Metal-Catalyzed Solid-State Transformation of Amorphous Carbon. 1529–1534 (2011).
    [44] Recherches, C.De &Cedex, S. -350’c. 51, (1995).
    [45] Zhuo, Q. et al. Transfer-Free Synthesis of Doped and Patterned Graphene Films. (2014).
    [46] Juang, Z. et al. Synthesis of graphene on silicon carbide substrates at low temperature. Carbon N. Y. 47, 2026–2031 (2009).
    [47] Escobedo-cousin, E. et al. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. 114309, (2013).
    [48]Kang, C. Y. et al. silicidation reactions Few-layer graphene growth on 6H-SiC (0001) surface at low temperature via Ni-silicidation reactions. 251604, 2010–2015 (2012).
    [49]Machá, P., Fidler, T., Cicho, S. &Mi, L. Synthesis of graphene on SiC substrate via Ni-silicidation reactions. 520, 5215–5218 (2012).
    [50] Calcagno, L. et al. Schottky-Ohmic transition in nickel silicide / SiC system : is it really a solved problem  436, 721–724 (2003).
    [51] Search, H., Journals, C., Contact, A., Iopscience, M. &Address, I. P. Structural pattern formation in titanium – nickel contacts on silicon carbide following high-temperature. 898,
    [52] You, A., Be, M. A. Y. &In, I. Metal-catalyzed crystallization of amorphous carbon to graphene. 063110, (2010).
    [53] Hamilton, J. C. &Blakely, J. M. CARBON SEGREGATION co TO SINGLE CRYSTAL SURFACES OF Pt, Pd AND J.C. HAMILTON * and J.M. BLAKELY. 91, 199–217 (1980).
    [54] Yu, Q. et al. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 1–4 (2008).
    [55] Ischenko, V. &Woltersdorf, J. Oriented growth of silicide and carbon in SiC-based sandwich structures with nickel. 110, 303–310 (2008).
    [56] Peng, Z., Yan, Z., Sun, Z. &Tour, J. M. Direct growth of Bilayer graphene on SiO2substrates by carbon diffusion through nickel. ACS Nano 5, 8241–8247 (2011).
    [57] Murata, H., Toko, K., Saitoh, N., Yoshizawa, N. &Suemasu, T. Direct synthesis of multilayer graphene on an insulator by Ni-induced layer exchange growth of amorphous carbon. Appl. Phys. Lett. 110, 1–5 (2017).
    [58] Murata, H., Toko, K. &Suemasu, T. Multilayer graphene on insulator formed by Co- induced layer exchange. 1–5
    [59] Murata, H., Saitoh, N., Yoshizawa, N., Suemasu, T. &Toko, K. induced layer exchange High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange. 243104, 3–7 (2017).
    [60] Nast, O. et al. Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. 3214, 1–4 (2006).
    [61] Kwon, H., Ha, J. M., Yoo, S. H., Ali, G. &Cho, S. O. Synthesis of flake-like graphene from nickel-coated polyacrylonitrile polymer. 2, 1–6 (2014).
    [62] Thompson, C.V. Solid-State Dewetting of Thin Films. (2012).
    [63] [001] l Si-face [00i] I C-face. 48, 463–472 (1975).
    [64] Tromp, R. M. &Hannon, J. B. Thermodynamics and Kinetics of Graphene Growth on SiC ( 0001 ). 106104, 1–4 (2009).
    [65] Nie, S. H. U., Fisher, P. J., Feenstra, R. M., Gu, G. &Sun, Y. Temperature Dependence of Epitaxial Graphene Formation on SiC ( 0001 ). 38, 718–724 (2009).
    [66] Diagram, E. The C-Si ( Carbon-Silicon ) System. 5, 161–162 (1984).
    [67] Hannon, J. B. &Tromp, R. M. 1–4 (2008).
    [68] Hass, J., Heer, W. A.De &Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. 323202, (2008).
    [69] Khan, A., Islam, S. M., Ahmed, S., Kumar, R. R. &Habib, M. R. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates. (2018).
    [70] Access, O. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %.
    [71] Kuang, D., Xu, L., Liu, L., Hu, W. &Wu, Y. Applied Surface Science Graphene – nickel composites. Appl. Surf. Sci. 273, 484–490 (2013).
    [72] Jabbar, A. et al. RSC Advances Electrochemical deposition of nickel graphene composite coatings : e ff ect of deposition temperature on its surface morphology and. RSC Adv. 7, 31100–31109 (2017).
    [73] Haider, N. et al. Phonon thermal transport in 2H , 4H and 6H silicon carbide from fi rst principles. Mater. Today Phys. 1, 31–38 (2017).
    [74] Hou, H. W., Liu, Z., Teng, J. H., Palacios, T. &Chua, S. J. High Temperature Terahertz Detectors Realized by a GaN High Electron Mobility Transistor. Nat. Publ. Gr. 3–8 (2017).
    [75] Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene 2008. (2008).
    [76] Tongay, S. et al. Rectification at Graphene-Semiconductor Interfaces : Zero-Gap Semiconductor-Based Diodes. 011002, 1–10 (2012).
    [77] Z.Yan, G.Liu, J. M.Khan, andA. A.Balandin, “of high-power GaN transistors,” Nat. Commun., vol. 3, no. May, pp. 827–828, 2012.
    [78] Q. H.Ta et al., “Probing graphene grain boundaries with,” Nature, vol. 490, no. 7419, pp. 235–239, 2012.
    [79] K.Chung, “No Title,” vol. 655, no. 2010, 2014.
    [80] X.Lu et al., “Patterning of highly oriented pyrolytic graphite by oxygen plasma etching Patterning of highly oriented pyrolytic graphite by oxygen plasma etching,” vol. 193, no. 1999, pp. 10–13, 2013.
    [81] P.Gupta et al., “Free-standing semipolar III-nitride quantum well structures grown on chemical vapor deposited graphene layers Free-standing semipolar III-nitride quantum well structures grown on chemical vapor deposited graphene layers,” vol. 181108, 2013.
    [82]J.Kim et al., “single-crystalline films on epitaxial graphene,” Nat. Commun., vol. 5, pp. 1–7, 2014.
    [83] Z. H.Ni et al., “Raman spectroscopy of epitaxial graphene on a SiC substrate,” pp. 1–6, 2008.
    [84]J. A.Phys et al., “Ultraviolet Raman microscopy of single and multilayer graphene,” vol. 043509, no. July, 2009
    [85] Z.Tu et al., “Controllable growth of 1 – 7 layers of graphene by chemical vapour deposition,” Carbon N. Y., vol. 73, pp. 252–258, 2014.
    [86] Y.Hao et al., Probing Layer Number and Stacking Order of Few-Layer Graphene by Raman Spectroscopy , pp. 195–200, 2010.
    [87] H.Wang, Y.Wang, X.Cao, andG.Lan, “Vibrational properties of graphene and graphene layers.”
    [88] F.Tuinstra andJ. L.Koenig, “Raman Spectrum of Graphite Raman Spectrum of Graphite,” vol. 1126, no. 1970, 2012.
    [89] L. G.Cançado et al., “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy General equation for the determination of the crystallite size L a of nanographite by Raman spectroscopy,” vol. 163106, pp. 1–4, 2006.
    [90] H.Hu, S.Zhou, X.Liu, Y.Gao, C.Gui, andS.Liu, “Effects of GaN / AlGaN / Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes,” Nat. Publ. Gr., no. March, pp. 1–10, 2017.
    [91] W.Ke et al., “Applied Surface Science Epitaxial growth and characterization of GaN thin films on graphene / sapphire substrate by embedding a hybrid-AlN buffer layer,” Appl. Surf. Sci., vol. 494, no. July, pp. 644–650, 2019

    無法下載圖示 全文公開日期 2024/11/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE