簡易檢索 / 詳目顯示

研究生: 蔡雅如
Ya-Ju Tsai
論文名稱: PREPARATION OF CYCLODEXTRIN-IMMOBILIZED GRAPHENE OXIDE AND ITS BIOMEDICAL FUNCTIONS
PREPARATION OF CYCLODEXTRIN-IMMOBILIZED GRAPHENE OXIDE AND ITS BIOMEDICAL FUNCTIONS
指導教授: 今榮東洋子
TOYOKO IMAE
口試委員: 朱智謙
Chih-Chien Chu
蔡協致
Hsieh-Chih Tsai
邱顯堂
Jent,Hsien-Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 95
中文關鍵詞: 氧化石墨烯環糊精藥物攜載藥物釋放
外文關鍵詞: drug loading
相關次數: 點閱:160下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氧化石墨烯在材料領域中掀起一股研究風潮,同時其在生醫領域上的應用也被廣泛研究。本論文採用簡易的物理方法製備奈米級的氧化石墨烯(GO100);同時亦成功地合成並鑑定出由環糊精修飾的奈米級氧化石墨烯(GO100-CD)。此外探討GO100以及GO100-CD作為藥物載體,攜載抗癌藥物doxorubici(DOX)的效率。結果顯示GO100-CD對於DOX的攜載效率始終高於GO100,原因來自於GO100-CD中的環糊精可有效地包覆DOX;而GO100則是藉由π-π 堆疊作用力、輸水作用力、氫鍵以及靜電作用力以達到攜載DOX的效果。GO100-CD以及GO100在體外藥物釋放的結果中,顯示出與環境中的酸鹼值強烈相關,進一步指出在藥物載體攜載系統中其特定標靶的治療效果。
    當GO100-CD以及GO100攜載DOX後,發生DOX的螢光淬滅行為。然而令人驚訝的是,藉由第四代聚乙二胺樹枝狀高分子(G4-Den)鍵結修飾在GO100表面後,螢光強度恢復了約一倍。此外結果顯示出較晚鍵結在GO100表面的G4-Den不會與已攜附的DOX競爭GO100的表面環境,進而得到在有/無G4-Den存在下,相同的藥物攜帶量。值得注意的是,據我們所知這是第一篇有關於藥物攜載系統中,恢復螢光淬滅後之螢光的報告。此外在改變G4-Den的添加順序後,依然發生DOX螢光淬滅行為,結果顯示出螢光淬滅行為與G4-Den的存在無關。這進一步證實為何提升螢光淬滅後的強度只發生在GO100/DOX/G4-Den或是 GO100-CD/DOX/G4-Den的系統。所有的研究結果顯示出,本篇論文發表了一個有趣的藥物載體系統。


    In recent years, graphene oxide has become a prevailing topic in the materials community and its biomedical applications are investigated explosively. Here, the simple physical route for the preparation of nano sized graphene oxide (GO100) and the synthesis and characterization of cyclodextrin-immobilized graphene oxide (GO100-CD) were successfully performed. Furthermore, the controlled loading of doxorubicin (DOX), an anticancer drug, onto GO100 and GO100-CD was investigated. It was demonstrated that the loading capacity of DOX on GO100-CD was always higher than on GO100, and the difference comes from the inclusion of DOX in CD of GO100-CD, while the loading of DOX on GO100 can occur via π─π stacking, hydrophobic, hydrogen bonding, and/or electrostatic effects. Release profile showed strong pH dependence, indicating the specified therapeutic efficiency as a drug delivery.
    Fluorescence of free DOX was quenched after it was loaded on GO100 and GO100-CD. However, surprisingly, the reenhancement of fluorescence by about one order was obtained through the conjugation of fourth generation amine-terminated poly(amido amine) dendrimer (G4-Den) on GO100 surface. Besides, it was found that the later loading of G4-Den will be not competitive with the previously adsorbed DOX on GO100 domain, resulting in the same DOX loading capacity between with and without G4-Den loading. Notably, to the best of our knowledge, this is the first report concerning to the reenhancement of the quenched DOX fluorescence in drug delivery system. Moreover, the altering in G4-Den adding order happened the quenching of DOX fluorescence independent of the existence of G4-Den. This supports that the fluorescence reenhancement only occurred in GO100/DOX/G4-Den or GO100-CD/DOX/G4-Den. All these observations suggest that present system offers an exciting mode of delivering drugs.

    Acknowledgements…………………………………………………………………..ⅰ Abstract………………………………………………………………………………ⅱ 摘要 ...........................................................ⅲ Table of contents................................................... ⅳ List of figures………………………………………………………………………...ⅴ List of tables...................................................... ⅵ Chapter 1 Introduction 1 1.1 Background 1 1.2 Graphene oxide - graphene nanomaterial family ……………………………2 1.3 Graphene oxide in biomedical application 4 1.4 Cyclodextrins in drug delivery 6 1.5 Poly(amido amine) dendrimers in drug delivery 7 1.6 Fluorescence emission from poly(amido amine) dendrimers 9 Chapter 2 Motivation 11 Chapter 3 Experimental section 13 3.1 Chemicals…………………………………………………………………...13 3.2 Instruments 13 3.3 Experimental procedure 3.3.1 Synthesis of amino-β-cyclodextrin 14 3.3.2 Preparation of nano-graphene oxide (GO100) 15 3.3.3 Synthesis of amino-β-cyclodextrin-functionalized graphene oxide (GO100-CD) nanohybrid 15 3.3.4 Conjugation of doxorubicin (DOX) to GO100 and GO100-CD 16 3.3.5 In vitro drug release response 17 3.3.6 Cell culture 17 3.3.7 In vitro cytotoxicity assay 17 3.3.8 Fluorescence recovery of DOX-loaded GO100 and DOX-loaded GO100-CD by G4-Den-NH2 18 3.3.9 DOX-loading on G4-Den-NH2-bound GO100 and GO100-CD 19 Chapter 4 Results and discussion 20 4.1 Characterization of amino-β-cyclodextrin, GO100, and GO100-CD 20 4.1.1 Characterization of amino-β-cyclodextrin…………………………..20 4.1.2 Characterization of GO100 25 4.1.3 Characterization of GO100-CD nanohybrid 33 4.2 Conjugation of DOX on GO100 and GO100-CD nanohybrid for drug delivery……………………………………………………………...40 4.2.1 DOX loading capacity on GO100 and GO100-CD nanohybrid…..........41 4.2.2 Characterization of DOX on GO100 and GO100-CD nanohybrid 44 4.2.3 Interaction of DOX with GO100 and GO100-CD 48 4.2.4 Interaction of DOX with CD in GO100-CD………………………….52 4.2.5 Efficiency of DOX releasing from GO100 and GO100-CD nanohybrid ………………………………………………………….52 4.2.6 In vitro cytotoxicity study ……………………………….………….54 4.3 Effect of G4-PAMAM-NH2 dendrimer on fluorescence behavior of DOX-loaded GO100 and GO100-CD nanohybrid…………………….57 4.3.1 Fluorescence quenching behavior in DOX-loaded GO100 and DOX-loaded GO100-CD………………………………………………57 4.3.2 Fluorescence enhancement of DOX-loaded GO100, DOX-loaded GO100-CD by using G4-PAMAM-NH2 dendrimer 61 4.4 Comparison of conjugation process of dendrimerand DOX-loading on GO100 and GO100-CD 67 4.4.1 Characterization of G4-PAMAM-dendrimer functionalized GO100 and GO100-CD………………………………………………………..67 4.4.2 DOX loading capacity on GO100/G4-Den and GO100-CD/G4-Den….73 4.4.3 Fluorescence behavior of GO100/G4-Den and GO100-CD/Den after DOX was loaded …………………………………………………….75 4.5 Summary 76 Chapter 5 Conclusion 78 References 80

    References
    [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. Electric field effect in atomically thin carbon films. Science (2004), 306, 666 – 669.
    [2] Park, S., An, J., Jung, I., Piner, R. D., An, S. J., Li, X., Velamakanni, A., and Ruoff , R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. (2009), 9, 1593 – 1597.
    [3] Cote, L., Kim, J., Tung, C., Luo, J., Kim, F., and Jiaxing Huang, J. Graphene oxide as surfactant sheets. Pure Appl. Chem. (2011), 83, 95 – 110.
    [4] Kim, F., Cote, L. J., and Huang, J. Graphene oxide: surface activity and two-dimensional assembly. Adv. Mater. (2010), 22, 1954 – 1958.
    [5] Guo, F., Kim, F., Han, T. H., Shenoy, V., Huang, J., and Hurt, R. H. Hydration-responsive folding and unfolding transitions in graphene oxide liquid crystal phases. ACS Nano, in press. (2011), 5(10), 8019–8025
    [6] Neto AC, Guinea F, Peres NM, Novoselov KSS, Geim AK, The electronic properties of graphene. Rev Mod Phys (2009) 81, 109–162
    [7] Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu CA graphene modified anode to improve the performance of microbial fuel cells. J Power Sources (2011a), 196, 5402–5407
    [8] Liu Z, Robinson JT, Sun XM, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. (2008), 130(33), 10876-10877.
    [9] Shen H., Zhang L., Liu M., and Zhang Z., Biomedical applications of graphene, Theranostics (2012), 2(3), 283-294
    [10] Shan CS, Yang HF, Han DX, Zhang Q, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir. (2009), 25(20), 12030-12033.
    [11] Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. (2008), 1(3), 203-212.
    [12] Lei HZ, Mi LJ, Zhou XJ, Chen J, Hu J, Guo S, Zhang Y, Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale. (2011), 3, 3888-3892.
    [13] Zhang JL, Zhang F, Yang HJ, Huang X, Liu H, Zhang J, Guo S, Graphene oxide as a matrix for enzyme immobilization. Langmuir. (2010), 26(9), 6083-6085.
    [14] Zhang F, Zheng B, Zhang JL, Horseradish peroxidase immobilized on graphene oxide: physical properties and applications in phenolic compound removal. Phys Chem C. (2010), 114(18), 8469-8473.
    [15] Lee DY, Khatun Z, Lee JH, Lee YK, In I, Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules. (2011), 12(2), 336-341.
    [16] Dong HF, Gao WC, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem. (2010), 82(13), 5511-5517.
    [17] Chen WH, Yi PW, Zhang Y, Composites of aminodextrancoated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces. (2011), 3(10), 4085–4091.
    [18] Shen JF, Shi M, Li N, Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. (2010), 3(5), 339-349.
    [19] Z. Liu, A. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. Felsher and H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew Chem Int Ed (2009), 48, 7668-7672.
    [20] P. K. Jain, X. Huang, I. H. El-Sayed and M. A. El-Sayed, Acc., Noble Metals on the Nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Chem. Res., (2008), 41, 1578-1586.
    [21] O. C. Farokhzad and R. Langer, Impact of nanotechnology on drug delivery, ACS Nano, (2009), 3, 16-20.
    [22] Loh KP, Bao QL, Eda G, Graphene oxide as a chemically tunable platform for optical applications. Nat chem, (2010), 2, 1015-1024.
    [23] Kovtyukhova NI, Ollivier PJ, Martin BR, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater. (1999), 11, 771-778.
    [24] Sun XM, Liu Z, Welsher K, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. (2008), 1(3), 203-212.
    [25] M. E. Davis and M. E. Brewster, Cyclodextrin-based pharmaceutics: past, present and future, Nat. Rev. Drug Discovery, (2004), 3, 1023–1035.
    [26] Y. Chen and Y. Liu, Cyclodextrin-based bioactive supramolecular assemblies, Chem. Soc. Rev., (2010), 39, 495–505.
    [27] J. X. Zhang and P. X. Ma, Host–guest interactions mediated nano-assemblies using cyclodextrin-containing hydrophilic polymers and their biomedical applications, Nano Today, (2010), 5, 337–350.
    [28] F. van de Manakker, T. Vermonden, C. F. van Nostrum and W. E. Hennink, Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications, Biomacromolecules, (2009), 10, 3157–3175.
    [29] E. Bilensoy, A. A. Hincal, Expert Opin., Recent advances and future directions in amphiphilic cyclodextrin nanoparticles, Drug Delivery, (2009), 6, 1161–1173.
    [30] S. Daoud-Mahammed, P. Couvreur, K. Bouchemal, M. Cheron, G. Lebas, C. Amiel and R. Gref, Cyclodextrin and polysaccharide-based nanogels: entrapment of two hydrophobic molecules, benzophenone and tamoxifen, Biomacromolecules, (2009), 10, 547–554.
    [31] S. Daoud-Mahammed, C. Ringard-Lefebvre, N. Razzouq, V. Rosilio, B. Gillet, P. Couvreur, C. Amiel, R. Gref, Spontaneous association of hydrophobized dextran and poly-β-cyclodextrin into nanoassemblies.: Formation and interaction with a hydrophobic drug, J. Colloid Interface Sci., (2007), 307, 83–93.
    [32] R. Gref, C. Amiel, K. Molinard, S. Daoud-Mahammed, B. Sebille, B. Gillet, J. C. Beloeil, C. Ringard, V. Rosilio, J. Poupaert, P. Couvreur, New self-assembled nanogels based on host-guest interactions: characterization and drug loading, J. Controlled Release, (2006), 111, 316–324.
    [33] R. Haag, Supramolecular drug-delivery systems based on polymeric core-shell architectures, Angew. Chem., Int. Ed., (2004), 43, 278–282.
    [34] M. E. Davis, Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin, Adv. Drug Delivery Rev., (2009), 61, 1189–1192.
    [35] J. Cheng, K. T. Khin and M. E. Davis, Antitumor activity of β-cyclodextrin polymer-campthothecin conjugates, Mol. Pharmaceutics, (2004), 1, 183–193.
    [36] H. Tanaka, K. Kominato, R. Yamamoto, T. Yoshioka, H. Nishida, H. Tone and R. Okamoto, Synthesis of doxorubicin-cyclodextrin conjugates, Journal of Antibiotics, (1994), 47, 1025–1029.
    [37] Szejtli J., Cylodextrin in drug formulations: Part I., Pharm Technol Int. (1991), 3, 15-23.
    [38] A. Al-Omar, S. Abdou, L. De Robertis, A. Marsura and C. Finance, Complexation study and anticellular activity enhancement by doxorubicin-cyclodextrin complexes on a multidrug-resistant adenocarcinoma cell line, Bioorg. Med. Chem. Lett., (1999), 9(8), 1115–1120.
    [39] P. Y. Grosse, F. Bressolle, P. Vago, J. Simony-Lafontaine, M. Radal and F. Pinguet, Tumor cell membrane as a potential target for methyl-beta-cyclodextrin, Anticancer Res., (1998), 18, 379–384.
    [40] P. Y. Grosse, F. Bressolle and F. Pinguet, In vitro modulation of doxorubicin and docetaxel antitumoral activity by methyl-beta-cyclodextrin, Eur. J. Cancer, (1998), 34, 168–174.
    [41] P. Y. Grosse, F. Bressolle and F. Pinguet, Antiproliferative effect of methyl-beta-cyclodextrin in vitro and in human tumour xenografted athymic nude mice, Br. J. Cancer, (1998), 78, 1165–1169.
    [42] P. Y. Grosse, F. Bressolle, F. Pinguet, Methyl-beta-cyclodextrin in HL-60 parental and multidrug-resistant cancer cell lines: effect on the cytotoxic activity and intracellular accumulation of doxorubicin, Cancer Chemother Pharmacol., (1997), 40, 489–494.
    [43] Medina SH, El-Sayed MEH, Dendrimers as carriers for delivery of chemotherapeutic agents, Chem Rev, (2009),109,3141-3157.
    [44] Kaneshiro TL, Lu ZR. Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier, Biomaterials, (2009),30,5660-5666.
    [45] Meredith A. Mintzer and Mark W. Grinstaff, Biomedical applications of dendrimers: a tutorial, Chem. Soc. Rev., (2011), 40, 173-190
    [46] Lee IH, Yu MK, Kim IH, Lee JH, Park TG, Jon S., A duplex oligodeoxynucleotide–dendrimer bioconjugate as a novel delivery vehicle for doxorubicin in in vivo cancer therapy, J Control Release. (2011), 155(1),88-95
    [47] A. K. Patri, J. F. Kukowska-Latallo and J. R. Baker Jr., Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex, Adv. Drug Delivery Rev., (2005), 57, 2203–2214.
    [48] C. Kojima, K. Kono, K. Maruyama and T. Takagishi, Synthesis of polyamidoamine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs, Bioconjugate Chem., (2000), 11, 910–917
    [49] M. Liu, K. Kono and J. M. J. Fre´chet, Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents, J. Controlled Release, (2000), 65, 121–131.
    [50] G. Pistolis, A. Malliaris, C.M. Paleos, D. Tsiourvas, Study of poly(amidoamine) starburst dendrimers by fluorescence probing, Langmuir, (1997) 13, 5870–5875.
    [51] S. Jockusch, J. Ramirez, K. Sanghvi, R. Nociti, N.J. Turro, D.A. Tamalia, Comparison of nitrogen core and ehtylenediamine core starburst dendrimers through photochemical and soectroscopic probes, Macromolecules, (1999), 32, 4419–4423.
    [52] D.A. Wade, P.A. Torres, S.A. Tucker, Spectrochemical investigations in dendritic media: evaluation of nitromethane as a selective fluorescence quenching agent in aqueous carboxylate-terminated polyamido amine (PAMAM) dendrimers, Anal. Chim. Acta, (1999), 397, 17–31.
    [53] Z. Sideratou, D. Tsiouras, C.M. Paleos, Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems, Langmuir, (2000), 16, 1766–1769.
    [54] D.L. Richter-Egger, A. Tesfai, S.A. Tucker, Spectroscopic investigations of poly(propyleneimine) dendrimers using the solvatochromic probe phenol blue and comparisons to poly(amidoamine) dendrimers, Anal. Chem., (2001), 73, 5743–5751.
    [55] O. Varnavski, R.G. Ispasoiu, L. Balogh, D.A. Tomalia, T. Goodson III, Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites, J. Chem. Phys. (2001), 114, 1962–1965.
    [56] C.L. Larson, S.A. Tucker, Intrinsic fluorescence of carboxylate-terminated polyamido amine dendrimers, Appl. Spectrosc. (2001), 55, 679–683.
    [57] Lee, W. I.; Bae, Y.; Bard, A. J., Strong blue photoluminescence and ECL from OH-Terminated PAMAM dendrimers in the absence of gold nanoparticles, J. Am. Chem. Soc. (2004), 126, 8358 -8359.
    [58] D. Wang, T. Imae, M. Miki, Fluorescence emission from PAMAM and PPI dendrimers, J. Colloid Interface Sci. (2007), 306, 222-227.
    [59] O. Yemul, T. Imae, Synthesis and characterization of poly(ethyleneimine) dendrimers, Colloid Polym. Sci. (2008), 286, 747-752.
    [60] D. Wang, T. Imae, Fluorescence emission from dendrimers and its pH dependence, J. Am. Chem. Soc. (2004), 126, 13204-13205.
    [61] L. Pastor-Pe´rez, Y. Chen, Z. Shen, A. Lahoz, S.-E. Stiriba, Unprecedented blue intrinsic photoluminescence from hyperbranched and linear polyethylenimines: polymer architectures and pH- effects, Macromol. Rapid Commun. (2007), 28, 1404-1409.
    [62] D. Onoshima, T. Imae, Dendritic nano- and microhydrogels fabricated by triethoxysilyl focal dendrons, Soft Matter, (2006), 2, 141-148.
    [63] X. Sun, Z. Liu, K. Welsher, J. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. (2008), 1, 203–212.
    [64] Z. Liu, J. T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, J. Am. Chem. Soc. (2008), 130, 10876–10877.
    [65] X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang, Y. Chen, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide, J. Phys. Chem. C, (2008), 112, 17554–17558.
    [66] S. Mansouri, Y. Cuie, F. Winnik, Q. Shi, P. Lavigne, M. Benderdour, E. Beaumont, J.C.Fernandes, Characterization of folate-chitosan-DNA nanoparticles for gene therapy, Biomaterials, (2006), 27, 2060–2065.
    [67] T.H. Kim, I.K. Park, J.W. Nah, Y.J. Choi, C.S. Cho, Galactosylated chitosan/DNA nanoparticles prepared using water-soluble chitosan as a gene carrier, Biomaterials, (2004), 25, 3783–3792.
    [68] J.L. Zhang, R.S. Srivastava, R.D.K. Misra, Core−Shell Magnetite Nanoparticles Surface Encapsulated with Smart Stimuli-Responsive Polymer:  Synthesis, Characterization, and LCST of Viable Drug-Targeting Delivery System, Langmuir, (2007), 23, 6342–6351.
    [69] Q. Yuan, R. Venkatasubrananian, S. Hein, R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer, Acta Biomater., (2008), 4, 1024–1037.
    [70] H. Zhang, S. Mardyani, W.C.W. Chan, E. Kumacheva, Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics, Biomacromol., (2006), 7 (5), 1568–1572.
    [71] Hidenori Ohashi, Yoshie Hiraoka, Takeo Yamaguchi, An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property, Macromolecules, (2006), 39, 2614-2620
    [72] Tomoko Yamazaki, Toyoko Imae, Preparation of dendrimer SAM on Au substrate and adsorption/desorption of Poly-L-glutamate on the SAM, J. Nanosci. Nanotech., (2005), 5, 1066-1071.
    [73] Xiaoying Yang, Xiaoyan Zhang, Zunfeng Liu, Yanfeng Ma, Yi Huang, Yongsheng Chen, High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide, J. Phys. Chem. C, (2008), 112, 17554-17558.
    [74] Q. Yuan, R. Venkatasubramanian, S. Hein, R.D.K. Misra, A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer, Acta Biomaterialia, (2008), 4, 1024–1037.
    [75] Tsai, Y.J.;Hu, C.C.;Chu, C.C.;Toyoko, I. , Intrinsically Fluorescent PAMAM Dendrimer as Gene Carrier and Nanoprobe for Nucleic Acids Delivery: Bioimaging and Transfection Study, Biomacromolecules, (2011), 12, 4283-4290.
    [76] Li, N.; Liu, J.; Zhao, X.; Gao, Y.; Zhang, L.; Zhang, J.; Yu, L., Complex formation of ionic liquid surfactant and β-cyclodextrin, Colloids Surf. A, (2007), 292, 196–201.
    [77]. Li, W.; Lu, B.; Sheng, A.; Yang, F.; Wang, Z., Spectroscopic and theoretical study on inclusion complexation of beta-cyclodextrin with permethrin., J. Mol. Struct., (2010), 981, 194–203.
    [78]. Li, J.; Ni, X.; Zhou, Z.; Leong, K.W., Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propyleneoxide) triblock copolymers and α-cyclodextrin., J. Am. Chem. Soc., (2003), 125, 1788–1795.
    [79] Rusa, C.C.; Luca, C.; Tonelli, A.E., Polymer-cyclodextrin inclusion compounds: Toward new aspects of their inclusion mechanism, Macromolecules, (2001), 34, 1318–1322.
    [80] G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Gracio, Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth, Chem. Mater, (2009), 21, 4796-4802.
    [81] Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MM, Simultaneous determination of L-ascorbic acid, dopamine and uric acid with gold nanoparticles-β-cyclodextrin graphene-modified electrode by square wave voltammetry, Talanta, (2012), 93, 79-85
    [82] M. Wei, J. Wang, J. He, D.G. Evans, X. Duan, In situ FT-IR, in situ HT-XRD and TPDE study of thermal decomposition of sulfated β-cyclodextrin intercalated in layered double hydroxides, Micropor. Mesopor. Mat., (2005), 78, 53-61.
    [83] Chen, M.; Diao, G.; Zhang, E., Study of inclusion complex of β-cyclodextrin and nitrobenzene, Chemosphere, (2006), 63, 522–529.
    [84] Russell C. Petter , Jeffrey S. Salek , Christopher T. Sikorski , G. Kumaravel , Fu Tyan Lin, Cooperative Binding by Aggregated Mono-6-( alky1amino)-P-cyclodextrins, J. Am. Chem. SOC., (1990), 112, 3860-3868.
    [85] S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., (2009), 4, 217-224.
    [86] D. R. Dreyer, S. Park, C. W. Bielawski, R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., (2010), 39, 228-240.
    [87] K. P. Loh, Q. Bao, P. K. Ang, J. Yang, The chemistry of graphene, J. Mater. Chem.,2010, 20, 2277-2289.
    [88] W. S. Hummers, R. E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958,80, 1339-1339.
    [89] Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials, Nature, (2006), 442, 282- 286.
    [90] Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of graphene oxide paper, Nature, (2007), 448, 457- 460.
    [91] Li, D.; Müller, M. B.; Gilge, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechol, (2008), 3, 101-105.
    [92] Hummers, W. S.; Offeman, R. E., Preparation of graphitic oxide., J. Am. Chem. Soc., (1958), 80, 13391339.
    [93] Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science, (2008), 319, 1229- 1232.
    [94] Cai, D. Y.; Song, M., Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents, J. Mater. Chem., (2007), 17, 3678- 3680.
    [95] Sun XM, Liu Z, Welsher K, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. (2008), 1(3), 203-212
    [96] Kang, Dong-Woo ; Shin, Hyeon-Suk , Control of size and physical properties of graphene oxide by changing the oxidation temperature, Carbon Letters, (2012), 13, 39-43.
    [97] Jin-Long Chen, Xiu-Ping Yan, Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH ,Chem. Commun., (2011), 47, 3135–3137.
    [98] The significance of zeta potential of colloids in water and waste water, ASTM Standard D 4187-82, American Society for Testing and Materials, (1985).
    [99] Jin-Long Chen, Xiu-Ping Yan, Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH ,Chem. Commun., (2011), 47, 3135–3137.
    [100] Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E., Cyclodextrin Functionalized Graphene Nanosheets with High Supramolecular Recognition Capability: Synthesis and Host−Guest Inclusion for Enhanced Electrochemical Performance, ACS Nano, (2010), 4, 4001 – 4010.
    [101] Jianghua Liu, Guosong Chen, Ming Jiang, Supramolecular Hybrid Hydrogels from Noncovalently Functionalized Graphene with Block Copolymers, Macromolecules, (2011), 44, 7682–7691.
    [102] Ogoshi T, Ichihara Y, Yamagishi TA, Nakamoto Y., Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-beta-cyclodextrin, Chem. Commun., (2010), 46 , 6087–6089.
    [103] Guoqiang Xie, Ju Cheng, Yifan Li, Pinxian Xi, Fengjuan Chen, Hongyan Liu, Fengping Hou, Yanjun Shi, Liang Huang, Zhihong Xu, Decheng Bai, Zhengzhi Zeng, Fluorescent graphene oxide composites synthesis and its biocompatibilitystudy, J. Mater. Chem., (2012), 22, 9308–9314.
    [104] Nan Wu, Xilin She, Dongjiang Yang, Xiaofeng Wu, Fabing Su, Yunfa Chen, Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite, J. Mater. Chem., (2012), 22, 17254–17261.
    [105] Ogoshi T, Ichihara Y, Yamagishi TA, Nakamoto Y., Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-beta-cyclodextrin, Chem. Commun., (2010), 46, 6087–6089.
    [106] X. G. Mei and J. Y. Ouyang, Carbon-based solids and materials, Carbon, (2011), 49, 5389–5397.
    [107] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, (2007),45, 1558–65.
    [108] Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Facile synthesis and characterization of graphene nanosheets, J Phys Chem C, (2008), 112, 8192–8195.
    [109] Zhang H, Tan T, Feng W, van der Spoel D., Molecular recognition in different environments: beta-cyclodextrin dimer formation in organic solvents, J Phys Chem B., (2012), 116(42), 12684-12693.
    [110] Z. Liu, A. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D. Felsher and H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem., Int. Ed., (2009), 48, 7668-7672.
    [111] P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Noble Metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine, Acc. Chem. Res., (2008), 41, 1578-1586.
    [112] O. C. Farokhzad, R. Langer, Impact of Nanotechnology on Drug Delivery, ACS Nano, (2009), 3, 16-20.
    [113] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric and H. Dai, Nano-graphene oxide for cellular imaging and drug delivery., Nano Res., (2008), 1, 203.
    [114] D. Depan, J. Shah, R. D. K. Misra, Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response, Mater. Sci. Eng., C, (2011), 31, 1305-1312.
    [115] K. Liu, J.-J. Zhang, F.-F. Cheng, T.-T. Zheng, C. Wang, J.-J. Zhu, Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery, J. Mater. Chem., (2011), 21, 12034-12040.
    [116] X. Yang, X. Zhang, Z. Liu, Y. Ma, Y. Huang, Y. Chen, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide, J. Phys. Chem. C, (2008), 112, 17554-17558.
    [117] Y. Yang, Y.-M. Zhang, Y. Chen, D. Zhao, J.-T. Chen, Y. Liu, Construction of a Graphene Oxide Based Noncovalent Multiple Nanosupramolecular Assembly as a Scaffold for Drug Delivery, Chem.–Eur. J., (2012), 18, 4208-4215.
    [118] D. Ma, J. Lin, Y. Chen, W. Xue and L.-M. Zhang, In situ gelation and sustained release of an antitumor drug by graphene oxide nanosheets, Carbon, (2012), 50, 3001-3007.
    [119] H. Hu, J. Yu, Y. Li, J. Zhao and H. Dong, Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery, J. Biomed. Mater. Res., Part A, (2012), 100A, 141-148.
    [120] H. Wen, C. Dong, H. Dong, A. Shen, W. Xia, X. Cai, Y. Song, X. Li, Y. Li, D. Shi, Engineered redox-responsive PEG detachment mechanism in PEGylated nano-graphene oxide for intracellular drug delivery, Small, (2012), 8, 760-769.
    [121] H. Bao, Y. Pan, Y. Ping, N. G. Sahoo, T. Wu, L. Li, J. Li, L. H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery, Small, (2011), 7, 1569-1578.
    [122] Y. Pan, H. Bao, N. G. Sahoo, T. Wu, L. Li, Water-Soluble Poly(N-isopropylacrylamide)–Graphene Sheets Synthesized via Click Chemistry for Drug Delivery, Adv. Funct. Mater, (2011), 21, 2754-2763.
    [123] N. G. Sahoo, H. Bao, Y. Pan, M. Pal, M. Kakran, H. K. F. Cheng, L. Li, L. P. Tan, Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study, Chem. Commun., (2011), 47, 5235-5237.
    [124] M. Kakran, N. G. Sahoo, H. Bao, Y. Pan, L. Li, Functionalized graphene oxide as nanocarrier for loading and delivery of ellagic Acid, Curr. Med. Chem., (2011), 18, 4503.
    [125] X. T. Zheng, C. M. Li, Restoring Basal Planes of Graphene Oxides for Highly Efficient Loading and Delivery of β-Lapachone, Mol. Pharmaceutics, (2012), 9, 615-621.
    [126] Y.-J. Lu, H.-W. Yang, S.-C. Hung, C.-Y. Huang, S.-M. Li, C.-C. M. Ma, P.-Y. Chen, H.-C. Tsai, K.-C. Wei, J.-P. Chen, Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized, Int. J. Nanomed., (2012), 7, 1737-1747.
    [127] Gewirtz, D. A., A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin, Biochem. Pharmacol., (1999), 57, 727-741.
    [128] Mingli P., Yanhong L., Photostability study of doxorubicin aqueous solution enhanced by inclusion interaction between doxorubicin and hydroxypropyl-β–cyclodextrin, Chin. J. Chem., (2010), 28, 1291-1295.
    [129] Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide, J. Phys. Chem. C 2008, 112 (45), 17554 − 17558.
    [130] Zhang, W.; Zhou, C.; Zhou, W.; Lei, A.; Zhang, Q.; Wan, Q.; Zou, B., Fast and considerable adsorption of methylene blue dye onto graphene oxide, Bull. Environ. Contam. Toxicol., (2011), 87 (1), 86 − 90.
    [131] Xiaoying Yang, Xiaoyan Zhang, Zunfeng Liu, Yanfeng Ma, Yi Huang, Yongsheng Chen, J. Phys. Chem. C, (2008), 112, 17554–17558.
    [132] Murakami, T.; Ajima, K.; Miyawaki, J.; Yudasaka, M.; Iijima, S.; Shiba, K., Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro, Mol. Pharm., (2004), 1, 399-405.
    [133] Choucair, A.; Soo, P. L.; Eisenberg, A., Active loading and tunable release of doxorubicin from block copolymer vesicles, Langmuir, (2005), 21, 9308-9313.
    [134] Guldi, D. M.; Marcaccio, M.; Paolucci, D.; Paolucci, F.; Tagma-tarchis, N.; Tasis, D.; Vazquez, E.; Prato, M., Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs, Angew. Chem., Int. Ed., (2003), 42, 4206-4209.
    [135] Murakami, H.; Nomura, T.; Nakashima, N., Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites, Chem. Phys. Lett. (2003), 378, 481-485.
    [136] Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide, J. Phys. Chem. C, (2008), 112 (45), 17554 − 17558.
    [137] Yang, X. Y.; Lu, Y. H.; Ma, Y. F.; Li, Y. J.; Du, F.; Chen, Y. S., Noncovalent nanohybrid of ferrocene with single-walled carbon nanotubes and its enhanced electrochemical property, Chem. Phys. Lett. (2006), 420, 416-420.
    [138]C.Velasco-Santos, A.L. Martinez-Hernandez, V.M. Castano, Hydrogen Bonding of Polystyrene Latex Nanospheres to Sidewall Carbon Nanotubes, J. Phys. Chem. B, (2004), 108 (49), 18866–18869.
    [139] S. Kayal, R.V. Ramanujan, Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery, Materials Science and Engineering C, (2010), 30, 484–490.
    [140] Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J., Structure of Graphite Oxide Revisited, J. Phys. Chem. B, (1998), 102, 4477-4482.
    [141] Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzalez, J. DE D.; Rojas-Cervantes, M. L.; Martin-Aranda, R. M., Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization, Carbon, (1995), 33, 1585-1892.
    [142] OuYang, F.; Huang, B.; Li, Z.; Xiao, J.; Wang, H.; Xu, H., Chemical Functionalization of Graphene Nanoribbons by Carboxyl Groups on Stone-Wales Defects, J. Phys. Chem. C, (2008), 112, 12003-12007.
    [143] Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. (2008), 1(3), 203-212.
    [144]Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y., High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide, J. Phys. Chem. C 2008, 112 (45), 17554 − 17558.
    [145] Liu Z, Robinson JT, Sun XM, Dai H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. (2008), 130(33), 10876-10877.
    [146] Chen, R.; Zhang, Y.; Wang, D.; Dai, H., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization , J. Am. Chem. Soc., (2001), 123, 3838–3839.
    [147] Liu, Z.; Sun, X.; Nakayama, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery, ACS Nano, (2007), 1, 50–56.
    [148] Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J., Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery, ACS Nano, (2007), 1, 50-56.
    [149] Sanchez VC, Jachak A, Hurt RH, Kane AB, Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review, Chem. Res. Toxicol. (2012), 25, 15–34.
    [150] M. E. Davis, Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin, Adv. Drug Delivery Rev., (2009), 61, 1189–1192.
    [151] Torchilin VP, Levchenko TS, Lukyanov AN, Khaw BA, Klibanov AL, Rammohan R, Samokhin GP, Whiteman KR., p-Nitrophenylcarbonyl-PEG-PE-liposomes: Fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta, 2001, 1511, 397–411.
    [152] Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. (2008), 1(3), 203-212.
    [153] Bharathi Konkena and Sukumaran Vasudevan., Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements, J. Phys. Chem. Lett., (2012), 3, 867−872.
    [154] Guo, Z.; Du, F.; Ren, D. M.; Chen, Y. S.; Zheng, J. Y.; Liu, Z. B.;Tian, J. G., Covalently porphyrin-functionalized single-walled carbon nanotubes: a novel photoactive and optical limiting donor–acceptor nanohybrid, J. Mater. Chem. (2006), 16, 3021-3030.
    [155] Baskaran, D.; Mays, J. W.; Zhang, X. P.; Bratcher, M. S., Carbon Nanotubes with Covalently Linked Porphyrin Antennae: Photoinduced Electron Transfer, J. Am.Chem. Soc., (2005), 127, 6916-6917.
    [156] Lu, Y. H.; Yang, X. Y.; Ma, Y. F.; Huang, Y.; Chen, Y. S., A novel nanohybrid of daunomycin and single-walled carbon nanotubes: photophysical properties and enhanced electrochemical activity., Biotechnol. Lett, (2008), 30, 1031.
    [157] Sayes, C. M.; Liang, F.; Hudson, J. L.; Mendez, J.; Guo, W.; Beach, J. M.; Moore, V. C.; Doyle, C. D.; West, J. L.; Billups, W. E.; Functionalization Density Dependence of Single-Walled Carbon Nanotubes Cytotoxicity in vitro, Toxicol. Lett., (2006), 161, 135– 142.
    [158] Dumortier, H.; Lacotte, S.; Pastorin, G.; Marega, R.; Wu, W.; Bonifazi, D.; Briand, J.-P.; Prato, M.; Muller, S.; Bianco, A. Functionalized Carbon Nanotubes are Non-cytotoxic and Preserve the Functionality of Primary Immune Cells, Nano Lett., (2006), 6, 1522– 1528.
    [159]Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated Nano-graphene Oxide for Delivery of Water-Insoluble Cancer, Drugs. J. Am. Chem. Soc., (2008), 130, 10876 – 10877.
    [160] Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.; Goodwin, A.; Zaric, S.; Dai, H., Nano-Graphene Oxide for Cellular Imaging and Drug Delivery., Nano Res., (2008), 1, 203–212.
    [161] Chen, H.; M € uller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D., Mechanically strong, electrically conductive, and biocom-patible graphene paper., Adv. Mater., (2008), 20, 3557–3561.
    [162] Agarwal, S.; Zhou, X.; Ye, F.; He, Q.; Chen, G. C. K.; Soo, J.; Boey, F.; Zhang, H.; Chen, P., Interfacing Live Cells with Nanocarbon Substrates., Langmuir, (2010), 26, 2244 – 2247.
    [163] Soares A, Francisca C, Rui de A, Francisco V., Oral administration of peptides and proteins: nanoparticles and cyclodextrins as biocompatible delivery systems., Nanomedicine., (2007), 2, 183–202.
    [164] Wenbing Hu , Cheng Peng , Min Lv , Xiaoming Li , Yujie Zhang , Nan Chen , Chunhai Fan, Qing Huang, Protein Corona-Mediated Mitigation of Cytotoxicity of Graphene Oxide, ACS Nano, (2011), 5 (5), 3693–3700.
    [165] Conner SD, Schmid SL., regulated portals of entry into the cell, Nature, (2003), 422, 37-44.
    [166] G. Pistolis, A. Malliaris, C.M. Paleos, D. Tsiourvas, Study of Poly(amidoamine) Starburst Dendrimers by Fluorescence Probing, Langmuir, (1997), 13, 5870–5875.
    [167] S. Jockusch, J. Ramirez, K. Sanghvi, R. Nociti, N.J. Turro, D.A. Tamalia, Comparison of nitrogen core and ehtylenediamine core starburst dendrimers through photochemical and soectroscopic probes, Macromolecules, (1999), 32, 4419–4423.
    [168] D.A. Wade, P.A. Torres, S.A. Tucker, Spectrochemical investigations in dendritic media: evaluation of nitromethane as a selective fluorescence quenching agent in aqueous carboxylate-terminated polyamido amine (PAMAM) dendrimers, Anal. Chim. Acta, (1999), 397, 17–31.
    [169] Z. Sideratou, D. Tsiouras, C.M. Paleos, Quaternized Poly(propylene imine) Dendrimers as Novel pH-Sensitive Controlled-Release Systems, Langmuir, (2000), 16, 1766–1769.
    [170] D.L. Richter-Egger, A. Tesfai, S.A. Tucker, Quaternized Poly(propylene imine) Dendrimers as Novel pH-Sensitive Controlled-Release Systems, Anal. Chem. (2001), 73, 5743–5751.
    [171] O. Varnavski, R.G. Ispasoiu, L. Balogh, D.A. Tomalia, T. Goodson III, Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites, J. Chem. Phys. 114 (2001) 1962–1965.
    [172] Tsai, Y.J.;Hu, C.C.;Chu, C.C.;Toyoko, I. , Intrinsically Fluorescent PAMAM Dendrimer as Gene Carrier and Nanoprobe for Nucleic Acids Delivery: Bioimaging and Transfection Study, Biomacromolecules, (2011), 12, 4283-4290.
    [173] D. Wang, T. Imae, Fluorescence emission from dendrimers and its pH dependence, J. Am. Chem. Soc. (2004), 126, 13204-13205.
    [174] P. Arjona, G. J. de Valcarcel and E. Roldan. two photon absorption, revista mexicana de fiscal, (2003), 49, 91-100.
    [175] S. Kawata, H. Sun,Two photon polymerization as a tool for making micro-devices., Applied Surface Science, (2003), 208, 153-158.

    無法下載圖示 全文公開日期 2018/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE