簡易檢索 / 詳目顯示

研究生: 施淳翔
Chung-Hsiang Shih
論文名稱: 應用田口法優化MoS2/rGO/SS316L 電極之特性探討
Application of Taguchi Method to optimize the MoS2/rGO/SS316L electrode
指導教授: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
口試委員: 王朝正
Chaur-Jeng Wang
王宜達
Yi-Ta Wang
梁煥昌
Huan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 76
中文關鍵詞: 電-芬頓系統田口方法還原氧化石墨烯二硫化鉬
外文關鍵詞: Electro-Fenton, Taguchi experiment, Reduced Graphene Oxide, Molybdenum Disulfide
相關次數: 點閱:284下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硫化鉬(Molybdenum Disulfide, MoS2)為二維奈米層狀材料,具備良好之電催化性能及耐蝕穩定性,惟其二維結構及層間作用力使其易產生團聚現象,導致活性反應點位降低並抑制電催化活性反應。還原氧化石墨烯(Reduced Graphene Oxide, rGO)具高電子遷移率,且偕同二硫化鉬可提供良好分散作用,有效抑制二硫化鉬之團聚現象產生,冀能進一步優化SS316L電極之電催化及電導性能。高級氧化處理透過電化學機制建構汙廢水處理技術其兼具自保持之機能,於電-芬頓系統中,陰極電極佔有相當重要地位。本研究以電泳沉積法於SS316L電極表面製備氧化石墨烯(Graphene Oxide, GO),後續以脫氧處理完成rGO之製備,再以電沉積法複合二硫化鉬塗層;實驗過程以田口方法進行製程參數調整,期望提升電極電催化性及抗腐蝕性能,進一步提升電-芬頓系統之Rh B染劑降解效能。
    結果顯示,相較SS316L電極,以電泳沉積電壓 45 V、GO 還原溫度 450 ℃ 及電沉積時間 600 s所製備之MoS2/rGO/SS316L複合電極其電催化性能、電導率及抗腐蝕能性可獲得顯著提升,該電極具最低腐蝕電流0.019 μA/cm2,電極具最低片電阻 4.77 kΩ·sq,同時陰極系統可獲致最高Rh B染劑降解率77.58 %;相較於SS316L電極,陰極系統Rh B降解率提升約1.4倍。綜上,還原氧化石墨烯複合二硫化鉬可有效改善塗層之均勻性及增加材料穩定性,藉此產生較高之反應活性點促進電催化反應,此結果可提供高級氧化處理電極材料揀選之參考。


    Molybdenum Disulfide (MoS2) is a two-dimensional nano-layered material which possess good electrocatalysis performance and corrosion resistance. However, its two-dimensional structure and interlayer force make agglomeration easily, leading to lower active sites and inhibiting electrocatalysis reactions. Reduced graphene oxide (rGO) has high electronic mobility, and it can eliminate the agglomeration of MoS2 to improve the electrocatalysis. Advanced oxidation processes (AOPs) construct wastewater treatment technology by electrochemical mechanisms, which has a function of self-reliance. In this study, rGO was prepared on surface of SS316L electrode by electrophoresis deposition, then MoS2 was compounded by electrodeposition. The Taguchi method is used to optimize the parameters of process, improving the electrocatalysis performance and corrosion resistance of electrode, to enhanceing Rh B removal rate in Electro-Fenton system.
    The results show that compared with SS316L electrode, the electrocatalysis performance, conductivity, and corrosion resistance of MoS2/rGO/SS316L prepared with 45 V by electrophoresis deposition, GO reduction temperature of 450 ℃, and electrodeposition time of 600 s can be significantly improved. This electrode possesses the lowest corrosion current of 0.019 μA/cm2, the lowest resistivity of 4.77 kΩ·sq, and the cathode system exhibited the highest Rh B degradation rate of 77.58%. In summary, rGO compounded with MoS2 can effectively modify the uniformity of coating and increase stability of electrode further. In this way, a higher active site is generated to promote the electrocatalysis reaction. This result can provide a reference to select electrode in AOPs.

    摘要 I Abstract II 謝誌 III 目錄 V 表目錄 VIII 圖目錄 IX 第一章 前言 1 第二章 文獻回顧 3 2.1 二硫化鉬(Molybdenum Disulfide) 3 2.1.1 二硫化鉬基本性質 3 2.1.2 二硫化鉬於電化學系統之應用 5 2.1.3 電沉積製備二硫化鉬 6 2.2 還原氧化石墨烯 7 2.2.1 還原氧化石墨烯特性及製備 7 2.2.2 還原氧化石墨烯於電化學系統之應用 8 2.2.3 電泳沉積製備還原氧化石墨稀 10 2.3 高級氧化處理 12 2.3.1 芬頓法 13 2.3.2 電-芬頓法 14 2.4 田口法 16 2.4.1 田口實驗設計 17 第三章 實驗方法 19 3.1 實驗流程與研究架構 19 3.2 實驗材料 21 3.2.1 電極製備材料及藥品 21 3.2.2 實驗場域之材料及藥品 21 3.2.3 實驗儀器設備 22 3.3 電極製備流程 23 3.3.1 田口法實驗設計 23 3.3.2 SS316L試片前處理 25 3.3.3 氧化石墨烯製備程序 25 3.3.4 製備還原氧化石墨烯程序 25 3.3.5 電沉積法製備二硫化鉬程序 26 3.4 MoS2/rGO/SS316L電極表面形貌與性能分析 27 3.4.1 掃描式電子顯微鏡 27 3.5 rGO還原程度評估 27 3.5.1 傅立葉轉換紅外線光譜儀 27 3.5.2 親疏水性能分析 28 3.5.3 四點探針量測 28 3.6 MoS2/rGO/SS316L電極電化學性能分析 28 3.6.1 循環伏安法 28 3.6.2 線性掃描伏安法 29 3.6.3 動電位極化法 29 3.7 MoS2/rGO/SS316L電極於電-芬頓系統之場域性能測試 30 3.7.1 電-芬頓場域架構 30 第四章 結果與討論 32 4.1 SS316L電極於電-芬頓系統效能探討 32 4.1.1 SS316L電極於電-芬頓系統之操作電位評估 32 4.1.2 SS316L電極於電-芬頓系統之性能測試 34 4.2 MoS2/rGO/SS316L電極之田口方法實驗 36 4.2.1 還原氧化石墨烯參數水準區間設置 36 4.2.2 二硫化鉬參數水準區間設置 38 4.2.3 田口方法L9降解效能評估 42 4.2.4 田口方法確認實驗 45 4.3 MoS2/rGO/SS316L電極特徵及性能 48 4.3.1 MoS2/rGO/SS316L電極表面形貌 48 4.3.2 rGO還原程度影響 52 4.3.3 MoS2/rGO/SS316L電極電化學性能 56 4.3.4 MoS2/rGO/SS316L電極之穩定性能 60 第五章 結論 64 參考文獻 66

    [1] J. Zhou, J. Qin, N. Zhao, C. Shi, E. Z. Liu, F. He, J. Li, and C. He, "Salt-template-assisted synthesis of robust 3D honeycomb-like structured MoS2 and its application as a lithium-ion battery anode", Journal of Materials Chemistry A, Vol. 4, No. 22, pp. 8734-8741, 2016.
    [2] Z. Jlidi, S. Baachaoui, N. Raouafi, and S. Ridene, "Temperature effect on structural, morphological and optical properties of 2D-MoS2 layers: An experimental and theoretical study", Optik, Vol. 228, p. 166166, 2021.
    [3] J. Ma, C. Lu, C. Liu, M. Qi, X. Xu, D. Yang, and X. Xu, "Electrophoretic deposition of ZnSnO3/MoS2 heterojunction photoanode with improved photoelectric response by low recombination rate", Journal of Alloys and Compounds, Vol. 810, p. 151845, 2019.
    [4] H. Song, Y. Ni, and S. Kokot, "Investigations of an electrochemical platform based on the layered MoS2–graphene and horseradish peroxidase nanocomposite for direct electrochemistry and electrocatalysis", Biosensors and Bioelectronics, Vol. 56, pp. 137-143, 2014.
    [5] L. Hao, J. Yu, X. Xu, L. Yang, Z. Xing, Y. Dai, Y. Sun, and J. Zou, "Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells", Journal of Power Sources, Vol. 339, pp. 68-79, 2017.
    [6] L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault, and B. Liu, "MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution", Advanced Functional Materials, Vol. 23, No. 42, pp. 5326-5333, 2013.
    [7] M. Sedki, P. S. Mirabedini, K. Nakama, G. Stephens, M. Groves, I. Lee, M. R. Neupane, and A. Mulchandani, "Synthesis of pristine graphene-like behaving rGO thin film: Insights into what really matters", Carbon, Vol. 186, pp. 437-451, 2022.
    [8] G. Gnana kumar, C. Joseph Kirubaharan, D. J. Yoo, and A. R. Kim, "Graphene/poly(3,4-ethylenedioxythiophene)/Fe3O4 nanocomposite – An efficient oxygen reduction catalyst for the continuous electricity production from wastewater treatment microbial fuel cells", International Journal of Hydrogen Energy, Vol. 41, No. 30, pp. 13208-13219, 2016.
    [9] N. Promphet, P. Rattanawaleedirojn, and N. Rodthongkum, "Electroless NiP-TiO2 sol-RGO: A smart coating for enhanced corrosion resistance and conductivity of steel", Surface and Coatings Technology, Vol. 325, pp. 604-610, 2017.
    [10] Y. Wang, S. Chou, D. Wexler, H. K. Liu, and S. X. Dou, "High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites", Chemistry - A European Journal, Vol. 20, pp. 9607-9612, 2014.
    [11] H. Xia, C. Li, G. Yang, Z. Shi, C. Jin, W. He, J. Xu, and G. Li, "A review of microwave-assisted advanced oxidation processes for wastewater treatment", Chemosphere, Vol. 287, p. 131981, 2022.
    [12] E. Domingues, E. Fernandes, J. Gomes, and R. C. Martins, "Advanced oxidation processes perspective regarding swine wastewater treatment", Science of The Total Environment, Vol. 776, p. 145958, 2021.
    [13] X. Wang, P. Cao, K. Zhao, S. Chen, H. Yu, and X. Quan, "Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment", Separation and Purification Technology, Vol. 276, p. 119266, 2021.
    [14] D. Li, T. Zheng, J. Yu, H. He, W. Shi, and J. Ma, "Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine", Journal of Industrial and Engineering Chemistry, 2021.
    [15] K. Feng, Y. Shen, D. Liu, P. K. Chu, and X. Cai, "Ni–Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells", International Journal of Hydrogen Energy, Vol. 35, No. 2, pp. 690-700, 2010.
    [16] 李輝煌,田口方法:品質設計的原理與實務第四版,高立圖書出版社,2013。
    [17] D. Kong, H. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, and Y. Cui, "Synthesis of MoS2 and MoSe2 films with vertically aligned layers", Nano letters, Vol. 13, No. 3, pp. 1341-1347, 2013.
    [18] J. O. Joswig, T. Lorenz, T. B. Wendumu, S. Gemming, and G. Seifert, "Optics, mechanics, and energetics of two-dimensional MoS2 nanostructures from a theoretical perspective", Accounts of chemical research, Vol. 48, No. 1, pp. 48-55, 2015.
    [19] Y. Yuan, R. t. Guo, L. f. Hong, X. y. Ji, Z. s. Li, Z. d. Lin, and W. g. Pan, "Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: a review", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 611, p. 125836, 2021.
    [20] A. Sinha, B. Tan, Y. Huang, H. Zhao, X. Dang, J. Chen, and R. Jain, "MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: A review", TrAC Trends in Analytical Chemistry, Vol. 102, pp. 75-90, 2018.
    [21] F. Ferreira, A. Carvalho, Í. J. Moura, J. Coutinho, and R. Ribeiro, "Adsorption of H2, O2, H2O, OH and H on monolayer MoS2", Journal of Physics: Condensed Matter, Vol. 30, No. 3, p. 035003, 2017.
    [22] X. Li, C. Wang, F. Liu, Z. Zhang, J. Ali, Q. Long, and J. Zhang, "Electrocatalytic reduction of Cr (VI) over heterophase MoS2 film electrode", Chemical Engineering Journal, Vol. 404, p. 126556, 2021.
    [23] H. Luo, Y. Cheng, Y. Zeng, K. Luo, and X. Pan, "Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants", Science of the Total Environment, Vol. 732, p. 139335, 2020.
    [24] J. Wang, Q. Luo, C. Luo, H. Lin, R. Qi, N. Zhong, and H. Peng, "High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets", Journal of Solid State Electrochemistry, Vol. 21, No. 7, pp. 2071-2077, 2017.
    [25] C. D. Gu, Y. H. You, X. L. Wang, and J. P. Tu, "Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine", Surface and Coatings Technology, Vol. 209, pp. 117-123, 2012.
    [26] T. Wang, R. Zhao, K. Zhan, L. Bao, Y. Zhang, Z. Yang, Y. Yan, B. Zhao, and J. Yang, "Preparation of electro-reduced graphene oxide/copper composite foils with simultaneously enhanced thermal and mechanical properties by DC electro-deposition method", Materials Science and Engineering: A, Vol. 805, p. 140574, 2021.
    [27] V. S. Saji, "Electrodeposition in bulk metallic glasses", Materialia, Vol. 3, pp. 1-11, 2018.
    [28] V. Torabinejad, M. Aliofkhazraei, S. Assareh, M. Allahyarzadeh, and A. S. Rouhaghdam, "Electrodeposition of Ni-Fe alloys, composites, and nano coatings–A review", Journal of Alloys and Compounds, Vol. 691, pp. 841-859, 2017.
    [29] E. A. Ponomarev, M. Neumann-Spallart, G. Hodes, and C. Lévy-Clément, "Electrochemical deposition of MoS2 thin films by reduction of tetrathiomolybdate", Thin Solid Films, Vol. 280, No. 1, pp. 86-89, 1996.
    [30] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS nano, Vol. 4, No. 8, pp. 4806-4814, 2010.
    [31] A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, "Substrate-free gas-phase synthesis of graphene sheets", Nano letters, Vol. 8, No. 7, pp. 2012-2016, 2008.
    [32] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, and H. Dai, "MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction", Journal of the American Chemical Society, Vol. 133, No. 19, pp. 7296-7299, 2011.
    [33] C. Zhou, J. Wang, X. Yan, X. Yuan, D. Wang, Y. Zhu, and X. Cheng, "Vertical MoS2 nanosheets arrays on carbon cloth as binder-free and flexible electrode for high-performance all-solid-state symmetric supercapacitor", Ceramics International, Vol. 45, No. 17, Part A, pp. 21534-21543, 2019.
    [34] I. Sengupta, S. Chakraborty, M. Talukdar, S. K. Pal, and S. Chakraborty, "Thermal reduction of graphene oxide: How temperature influences purity", Journal of Materials Research, Vol. 33, No. 23, pp. 4113-4122, 2018.
    [35] Y. Ma, J. Han, M. Wang, X. Chen, and S. Jia, "Electrophoretic deposition of graphene-based materials: A review of materials and their applications", Journal of Materiomics, Vol. 4, No. 2, pp. 108-120, 2018.
    [36] I. Corni, M. P. Ryan, and A. R. Boccaccini, "Electrophoretic deposition: From traditional ceramics to nanotechnology", Journal of the European Ceramic Society, Vol. 28, No. 7, pp. 1353-1367, 2008.
    [37] D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Dispersion behaviour of graphene oxide and reduced graphene oxide", Journal of colloid and interface science, Vol. 430, pp. 108-112, 2014.
    [38] J. H. Park and J. M. Park, "Electrophoretic deposition of graphene oxide on mild carbon steel for anti-corrosion application", Surface and Coatings Technology, Vol. 254, pp. 167-174, 2014.
    [39] E. Brillas, I. Sirés, and M. A. Oturan, "Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry", Chemical reviews, Vol. 109, No. 12, pp. 6570-6631, 2009.
    [40] M. Corona-Bautista, A. Picos-Benítez, D. Villaseñor-Basulto, E. Bandala, and J. M. Peralta-Hernández, "Discoloration of azo dye Brown HT using different advanced oxidation processes", Chemosphere, Vol. 267, p. 129234, 2021.
    [41] E. Chirwa and E. E. Bamuza-Pemu, "Investigation of photocatalysis as an alternative to other advanced oxidation processes for the treatment of filter backwash water", Water Research Commission, Gezina, South Africa. Report, Vol. 1, p. 10, 2010.
    [42] H. J. H. Fenton, "LXXIII.—Oxidation of tartaric acid in presence of iron", Journal of the Chemical Society, Transactions, Vol. 65, pp. 899-910, 1894.
    [43] C. Huang, C. Dong, and Z. Tang, "Advanced chemical oxidation: its present role and potential future in hazardous waste treatment", Waste management, Vol. 13, No. 5-7, pp. 361-377, 1993.
    [44] P. Nidheesh and R. Gandhimathi, "Trends in electro-Fenton process for water and wastewater treatment: an overview", Desalination, Vol. 299, pp. 1-15, 2012.
    [45] E. Brillas and S. Garcia-Segura, "Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule", Separation and Purification Technology, Vol. 237, p. 116337, 2020.
    [46] M. A. Oturan, "Outstanding performances of the BDD film anode in electro-Fenton process: Applications and comparative performance", Current Opinion in Solid State and Materials Science, Vol. 25, No. 3, p. 100925, 2021.
    [47] V. Poza-Nogueiras, E. Rosales, M. Pazos, and M. A. Sanroman, "Current advances and trends in electro-Fenton process using heterogeneous catalysts–a review", Chemosphere, Vol. 201, pp. 399-416, 2018.
    [48] J. Casado, "Towards industrial implementation of Electro-Fenton and derived technologies for wastewater treatment: A review", Journal of Environmental Chemical Engineering, Vol. 7, No. 1, p. 102823, 2019.
    [49] E. Brillas, "A review on the photoelectro-Fenton process as efficient electrochemical advanced oxidation for wastewater remediation. Treatment with UV light, sunlight, and coupling with conventional and other photo-assisted advanced technologies", Chemosphere, Vol. 250, p. 126198, 2020.
    [50] V. Kočanová and L. Dušek, "Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation", Monatshefte für Chemie-Chemical Monthly, Vol. 147, No. 5, pp. 935-941, 2016.
    [51] K. Thirugnanasambandham and V. Sivakumar, "Optimization of treatment of grey wastewater using Electro-Fenton technique–Modeling and validation", Process Safety and Environmental Protection, Vol. 95, pp. 60-68, 2015.
    [52] M. F. de Dios, O. Iglesias, E. Bocos, M. Pazos, and M. Sanromán, "Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation", Journal of Industrial and Engineering Chemistry, Vol. 20, No. 5, pp. 3754-3760, 2014.
    [53] X. Yu, W. Fu, M. Jiang, G. Liu, Y. Zou, and S. Chen, "Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7", Science of The Total Environment, Vol. 725, p. 138508, 2020.
    [54] X. Zhu and B. E. Logan, "Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment", Journal of hazardous materials, Vol. 252, pp. 198-203, 2013.
    [55] D. Wang, J. Hu, B. Liu, H. Hou, J. Yang, Y. Li, Y. Zhu, and K. Xiao, "Degradation of refractory organics in dual-cathode electro-Fenton using air-cathode for H2O2 electrogeneration and microbial fuel cell cathode for Fe2+ regeneration", Journal of Hazardous Materials, Vol. 412, p. 125269, 2021.
    [56] S. V. Mohan, G. Velvizhi, J. A. Modestra, and S. Srikanth, "Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements", Renewable and Sustainable Energy Reviews, Vol. 40, pp. 779-797, 2014.
    [57] P. Sharma, A. Verma, R. K. Sidhu, and O. P. Pandey, "Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design", Journal of Magnetism and Magnetic Materials, Vol. 307, No. 1, pp. 157-164, 2006.
    [58] M. Shayestefar, A. Mashreghi, S. Hasani, and M. T. Rezvan, "Optimization of the structural and magnetic properties of MnFe2O4 doped by Zn and Dy using Taguchi method", Journal of Magnetism and Magnetic Materials, Vol. 541, p. 168390, 2022.
    [59] A. M. Darbari and M. A. Alavi, "Application of Taguchi method in the numerical analysis of fluid flow and heat transfer around a flat tube with various axial ratios", International Communications in Heat and Mass Transfer, Vol. 126, p. 105472, 2021.
    [60] E. S. Khatibi, M. Haghighi, and S. Mahboob, "Efficient surface design of reduced graphene oxide, carbon nanotube and carbon active with cupper nanocrystals for enhanced simulated-solar-light photocatalytic degradation of acid orange in water", Applied Surface Science, Vol. 465, pp. 937-949, 2019.
    [61] E. Mousset, Z. Wang, J. Hammaker, and O. Lefebvre, "Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater", Electrochimica Acta, Vol. 214, pp. 217-230, 2016.
    [62] S. Ebrahimi, A. Bordbar-Khiabani, and B. Yarmand, "Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability", Journal of Alloys and Compounds, Vol. 845, p. 156219, 2020.
    [63] X. Zhang, X. Huang, M. Xue, X. Ye, W. Lei, H. Tang, and C. Li, "Hydrothermal synthesis and characterization of 3D flower-like MoS2 microspheres", Materials Letters, Vol. 148, pp. 67-70, 2015.
    [64] J. Liang, Y. Zhang, C. Song, D. Tang, and J. Sun, "Double-potential electro-Fenton: A novel strategy coupling oxygen reduction reaction and Fe2+/Fe3+ recycling", Electrochemistry Communications, Vol. 94, pp. 55-58, 2018.
    [65] L. Zhou, Z. Hu, C. Zhang, Z. Bi, T. Jin, and M. Zhou, "Electrogeneration of hydrogen peroxide for electro-Fenton system by oxygen reduction using chemically modified graphite felt cathode", Separation and Purification Technology, Vol. 111, pp. 131-136, 2013.
    [66] S. Mahmoodi, L. Sorkhi, M. Farrokhi-Rad, and T. Shahrabi, "Electrophoretic deposition of hydroxyapatite–chitosan nanocomposite coatings in different alcohols", Surface and Coatings Technology, Vol. 216, pp. 106-114, 2013.
    [67] A. Hajizadeh, M. Aliofkhazraei, M. Hasanpoor, and E. Mohammadi, "Comparison of electrophoretic deposition kinetics of graphene oxide nanosheets in organic and aqueous solutions", Ceramics International, Vol. 44, No. 9, pp. 10951-10960, 2018.
    [68] H. Hamaker, "Formation of a deposit by electrophoresis", Transactions of the Faraday Society, Vol. 35, pp. 279-287, 1940.
    [69] H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen, and Z. Z. Yu, "Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide", Journal of Materials Chemistry, Vol. 21, No. 14, pp. 5392-5397, 2011.
    [70] Y. Shang, T. Li, H. Li, A. Dang, L. Zhang, Y. Yin, C. Xiong, and T. Zhao, "Preparation and characterization of graphene derived from low-temperature and pressure promoted thermal reduction", Composites Part B: Engineering, Vol. 99, pp. 106-111, 2016.
    [71] Y. Wang, F. Lu, K. Su, N. Zhang, Y. Zhang, M. Wang, and X. Wang, "Engineering Mo-O-C interface in MoS2@rGO via charge transfer boosts hydrogen evolution", Chemical Engineering Journal, Vol. 399, p. 126018, 2020.
    [72] K. Silambarasan, S. Harish, K. Hara, J. Archana, and M. Navaneethan, "Ultrathin layered MoS2 and N-doped graphene quantum dots (N-GQDs) anchored reduced graphene oxide (rGO) nanocomposite-based counter electrode for dye-sensitized solar cells", Carbon, Vol. 181, pp. 107-117, 2021.
    [73] L. Zou, R. Qu, H. Gao, X. Guan, X. Qi, C. Liu, Z. Zhang, and X. Lei, "MoS2/RGO hybrids prepared by a hydrothermal route as a highly efficient catalytic for sonocatalytic degradation of methylene blue", Results in Physics, Vol. 14, p. 102458, 2019.
    [74] N. Ugur, Z. Bilici, K. Ocakoglu, and N. Dizge, "Synthesis and characterization of composite catalysts comprised of ZnO/MoS2/rGO for photocatalytic decolorization of BR 18 dye", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 626, p. 126945, 2021.
    [75] S. Shuai, Y. Liu, C. Zhao, H. Zhu, Y. Li, K. Zhou, W. Ge, and J. Hao, "Improved synthesis of graphene oxide with controlled oxidation degree by using different dihydrogen phosphate as intercalators", Chemical Physics, Vol. 539, p. 110938, 2020.
    [76] J. Choi, J. Mun, M. C. Wang, A. Ashraf, S.-W. Kang, and S. Nam, "Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting", Nano letters, Vol. 17, No. 3, pp. 1756-1761, 2017.
    [77] X. Hong, R. Wang, S. Li, J. Fu, L. Chen, and X. Wang, "Hydrophilic macroporous SnO2/rGO composite prepared by melamine template for high efficient photocatalyst", Journal of Alloys and Compounds, Vol. 816, p. 152550, 2020.
    [78] O. M. Slobodian, P. M. Lytvyn, A. S. Nikolenko, V. M. Naseka, O. Y. Khyzhun, A. V. Vasin, S. V. Sevostianov, and A. N. Nazarov, "Low-temperature reduction of graphene oxide: electrical conductance and scanning kelvin probe force microscopy", Nanoscale research letters, Vol. 13, No. 1, pp. 1-11, 2018.
    [79] F. Yu, M. Zhou, and X. Yu, "Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration", Electrochimica Acta, Vol. 163, pp. 182-189, 2015.
    [80] Z. Ai, T. Mei, J. Liu, J. Li, F. Jia, L. Zhang, and J. Qiu, "Fe@ Fe2O3 core− shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system", The Journal of Physical Chemistry C, Vol. 111, No. 40, pp. 14799-14803, 2007.
    [81] G. Asan, A. Asan, and H. Çelikkan, "The effect of 2D-MoS2 doped polypyrrole coatings on brass corrosion", Journal of Molecular Structure, Vol. 1203, p. 127318, 2020.
    [82] C. Chen, Y. He, G. Xiao, Y. Xia, H. Li, and Z. He, "Two-dimensional hybrid materials: MoS2-RGO nanocomposites enhanced the barrier properties of epoxy coating", Applied Surface Science, Vol. 444, pp. 511-521, 2018.
    [83] S. Tiwari, S. Kumar, and A. K. Ganguli, "Role of MoS2/rGO co-catalyst to enhance the activity and stability of Cu2O as photocatalyst towards photoelectrochemical water splitting", Journal of Photochemistry and Photobiology A: Chemistry, Vol. 424, p. 113622, 2022.

    QR CODE