簡易檢索 / 詳目顯示

研究生: 楊若綺
Jo-Chi Yang
論文名稱: 磺酸化氧化石墨烯接枝鹼金屬離子薄膜應用於質子傳導
Sulfonated Graphene Oxide Grafted with Alkali Metal Ions Membranes in Proton Conductivity
指導教授: 洪維松
Wei-Song Hung
口試委員: 胡蒨傑
Chien-Chieh Hu
林嘉和
Chia-Her Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 68
中文關鍵詞: 磺化氧化石墨烯質子交換膜鉀離子傳導膜高電導率傳導膜電解水產氫氣
外文關鍵詞: sulfonated graphene oxide, proton exchange membrane, potassium ion-conductive membrane, high conductivity membrane, electrolytic hydrogen production
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技不斷地創新進步,能源的需求也日益增加,為了減緩地球能源之耗竭,並改善日漸嚴重地環境汙染問題,各國開始提倡綠色能源,以潔淨能源產氫氣,以實現永續發展之目的,而產氫方式中又以水電解法最為出眾。本研究將碘化物氧化反應(Iodide oxidation reaction, IOR)來取代並優化傳統水電解之析氧反應(Oxygen evolution reaction, OER),此種方法為一種高值化產氫系統,在系統中之陽極使用碘化鉀溶液來進行碘離子氧化反應(IOR),同時結合陰極進行水的電解產氫氣。相對於傳統的電解水產氫氣方法,優化水電解法在相對較低的電位差(1.07伏特)下進行反應,這一優勢可以提高能量轉換效率,同時,除了產生氫氣作為潔淨能源,還能產生具有高附加價值的碘,從而提高整個系統的經濟效益和能源利用率。
    目前最常見被使用於水電解法產氫氣之薄膜:Nafion系列作為代表,由於此類薄膜為一種相對昂貴的材料,其生產成本較高,且在製造過程可能涉及氟化物等一些環境不友好的化學物質和工藝,因此,本研究製作一種應用於氫能源之親水磺化氧化石墨烯薄膜,以具有高鉀離子傳導能力、尺寸安定性以及於電化學系統穩定性的鉀離子傳導膜為目標。實驗步驟首先先將氧化石墨烯以硫酸和甲醇改質成磺化氧化石墨烯,此外,也將磺化氧化石墨烯分別以氫氧化鋰、氫氧化鈉、氫氧化鉀改質接枝上鋰、鈉、鉀離子,以不鏽鋼壓力輔助自組裝裝置(Pressure-assisted self-assembly technique)製作成薄膜並將其分別命名為GO、GO-SO3H、GO-SO3Li、GO-SO3Na、GO-SO3K。本研究先利用ATR-FTIR以及EDS來確認磺酸根官能基以及正一價金屬離子的接枝情形,再以SEM和AFM來觀察薄膜表面型態與物理結構鑑定;以XRD了解接枝磺酸根官能基、不同正一價金屬離子對於GO奈米片層間距之影響;使用WCA來確認薄膜之親疏水性,同時測量了薄膜之膨潤度與吸水率。在效能的部分,以EIS 進行薄膜電性分析,發現GO-SO3K具有最佳的質子傳導率119.16 mS;於鉀離子傳導度方面,GO-SO3K之效能也以43 mg/L最為突出。而於穩定性方面,在電化學系統中,GO系列之薄膜皆具有良好之穩定性。
    結合各種效能結果與各項不同鑑定,GO-SO3K薄膜將有做為鉀離子傳導膜之潛力。


    With the continuous innovation and progress of technology, the demand for energy also increases. In order to mitigate the depletion of earth's energy and address the increasingly severe environmental pollution problems, countries are advocating for green energy. Hydrogen production through clean energy source is being promoted to achieve sustainable development, with water electrolysis being the most prominent method. In this study, the iodide oxidation reaction (IOR) is proposed as a replacement and improvement on the traditional oxygen evolution reaction (OER) in water electrolysis. This method is a high-value hydrogen production system, where the anode utilizes a potassium iodide solution for iodide ion oxidation reaction (IOR), while hydrogen gas is simultaneously produced at the cathode through water electrolysis. Compared to the conventional electrolytic hydrogen production method, the optimized water electrolysis operates at a relatively low potential difference (1.07 V), resulting in higher energy conversion efficiency. Aside from besides generating hydrogen gas as a clean energy source, the process also produces valuable iodine. This enhances the economic benefits and energy utilization efficiency of the entire system.
    Currently, the most commonly used membrane in water electrolysis for hydrogen production is the Nafion series, which has a relatively high production cost. Additionally, the manufacturing process may involve harmful chemicals such as fluoride. Therefore, this study aims to develop a hydrophilic sulfonated graphene oxide (GO-SO3H) membrane for hydrogen energy applications, targeting a potassium ion-conductive membrane with high potassium ion conductivity, dimensional stability, and electrochemical system stability. The experimental procedure involves modifying graphene oxide with sulfuric acid and methanol to obtain sulfonated graphene oxide. Furthermore, sulfonated graphene oxide is separately modified and grafted with lithium hydroxide (LiOH), sodium hydroxide (NaOH), and potassium hydroxide (KOH) to introduce lithium, sodium, and potassium ions, respectively. Using a stainless-steel pressure-assisted self-assembly technique, thin membranes are prepared from the modified sulfonated graphene oxide and named GO, GO-SO3H, GO-SO3Li, GO-SO3Na, and GO-SO3K, respectively. The study confirms the grafting of sulfonic acid groups and monovalent metal ions using attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), while scanning electron microscope (SEM) and atomic force microscopy (AFM) are used to observe the surface morphology and physical structure of the membranes. X-ray diffractometer (XRD) is employed to understand the effects of grafted sulfonic acid groups and different monovalent metal ions on the interlayer spacing of GO nanosheets. The water contact angle (WCA) is measured to determine the hydrophilicity of the membranes, and the swelling degree and water uptake are also evaluated. In terms of performance, electrochemical impedance spectroscopy (EIS) is conducted to analyze the electrical properties of the membranes. The results show that GO-SO3K exhibits the highest proton conductivity of 119.16 mS, and in terms of potassium ion conductivity, GO-SO3K performs the best with a concentration of 43 mg/L. Regarding stability, all GO series membranes exhibit good stability in the electrochemical system.
    Combining the various performance results and different characterizations, the GO-SO3K membrane shows potential as a potassium ion-conductive membrane.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI 第一章 緒論 1 第二章 文獻回顧 3 2.1 潔淨能源 3 2.2 產氫方式 4 2.2.1 化石燃料熱分解(Thermal decomposition of fossil fuels) 4 2.2.1.1 烴類重整法(Hydrocarbon reforming) 4 2.2.1.2 烴類熱裂解法(Pyrolysis) 5 2.2.2 水電解(Water Electrolysis) 6 2.2.2.1 水電解法 6 2.2.2.2 優化水電解法 7 2.2.3 生物分解(Biohydrogen) 7 2.2.3.1 發酵產氫(Photofermentation) 7 2.2.3.2 光合產氫(Biophotolysis) 7 2.2.4 太陽能光解(Solar Photolysis) 8 2.2.4.1 光熱水分解(Thermochemical Water Splitting) 8 2.2.4.2 光電化學水分解(Photoelectrochemical Water Splitting) 8 2.3 離子交換膜 10 2.3.1 理想離子交換膜 10 2.3.2 常見離子交換膜 11 2.3.2.1 由氟系高分子組成 11 2.3.2.2 由碳氫系高分子組成 13 2.3.3 離子交換膜機制 14 2.3.3.1 吉布斯-唐南效應(Gibbs–Donnan effect) 14 2.3.3.2 擴散效應(Diffusion effect) 14 2.3.3.3 吸附/脫附(Adsorption/desorption) 15 2.3.4 磺化氧化石墨烯作為離子傳導膜 16 第三章 實驗材料與方法 17 3.1 實驗藥品 17 3.2 實驗儀器與設備 18 3.3 實驗步驟 19 3.3.1 氧化石墨烯之製備 19 3.3.2 磺酸化氧化石墨烯之製備 20 3.3.3 磺酸化氧化石墨烯接枝一價離子之合成 21 3.3.4 氧化石墨烯系列之薄膜製備 22 3.4 薄膜之鑑定 23 3.4.1 衰減全反射式傅立葉紅外光譜儀(ATR-FTIR) 23 3.4.2 X射線能量散布分析儀(EDS) 23 3.4.3 場發射掃描電子顯微鏡(FESEM) 24 3.4.4 原子力顯微鏡(AFM) 25 3.4.5 X光繞射儀(XRD) 26 3.4.6 水接觸角(WCA) 27 3.4.7 薄膜之膨潤度與吸水率之量測 28 3.4.8 電化學交流阻抗 29 3.4.9 離子滲透裝置 30 3.4.10 電化學系統及測試 31 第四章 結果與討論 32 4.1 磺酸化氧化石墨烯薄膜之鑑定與分析 32 4.1.1 氧化石墨烯磺酸化之薄膜鑑定 32 4.1.2 接枝一價離子磺酸化氧化石墨烯薄膜之鑑定 33 4.1.3 薄膜之表面型態與粗糙度分析 35 4.1.4 薄膜層間距之變化 39 4.1.5 薄膜之表面親疏水性分析 40 4.1.6 薄膜之尺寸安定性與吸水率 42 4.2 磺酸化氧化石墨烯之效能檢測 43 4.2.1 薄膜之質子傳導度 43 4.2.2 鉀離子傳導度 45 4.2.3 電化學以及穩定性測試 46 第五章 結論 47 參考文獻 48

    [1] T.S. Zeleke, M.-C. Tsai, M.A. Weret, C.-J. Huang, M.K. Birhanu, T.-C. Liu, C.-P. Huang, Y.-L. Soo, Y.-W. Yang, W.-N. Su, Immobilized single molecular molybdenum disulfide on carbonized polyacrylonitrile for hydrogen evolution reaction, ACS Nano 13(6) (2019) 6720-6729.
    [2] Q. Sun, Y. Tong, P. Chen, B. Zhou, X. Dong, Universal strategy of bimetal heterostructures as superior bifunctional catalysts for electrochemical water splitting, ACS Sustainable Chemistry & Engineering 9(11) (2021) 4206-4212.
    [3] Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions, Nature Communications 10(1) (2019) 5335.
    [4] H.B. Gray, Powering the planet with solar fuel, Nature Chemistry 1(1) (2009) 7-7.
    [5] T.E. Mallouk, Divide and conquer, Nature Chemistry 5(5) (2013) 362-363.
    [6] W. Zhu, W. Chen, H. Yu, Y. Zeng, F. Ming, H. Liang, Z. Wang, NiCo/NiCo–OH and NiFe/NiFe–OH core shell nanostructures for water splitting electrocatalysis at large currents, Applied Catalysis B: Environmental 278 (2020) 119326.
    [7] S.A. Chala, M.-C. Tsai, W.-N. Su, K.B. Ibrahim, A.D. Duma, M.-H. Yeh, C.-Y. Wen, C.-H. Yu, T.-S. Chan, H. Dai, Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions, ACS Catalysis 9(1) (2018) 117-129.
    [8] S. Gupta, M.K. Patel, A. Miotello, N. Patel, Metal boride‐based catalysts for electrochemical water‐splitting: A review, Advanced Functional Materials 30(1) (2020) 1906481.
    [9] K.B. Ibrahim, W.-N. Su, M.-C. Tsai, S.A. Chala, A.W. Kahsay, M.-H. Yeh, H.-M. Chen, A.D. Duma, H. Dai, B.-J. Hwang, Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst, Nano Energy 47 (2018) 309-315.
    [10] T. Reier, H.N. Nong, D. Teschner, R. Schlögl, P. Strasser, Electrocatalytic oxygen evolution reaction in acidic environments–reaction mechanisms and catalysts, Advanced Energy Materials 7(1) (2017) 1601275.
    [11] H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting, Nature Communications 6(1) (2015) 7261.
    [12] Y. Chen, A. Lavacchi, H. Miller, M. Bevilacqua, J. Filippi, M. Innocenti, A. Marchionni, W. Oberhauser, L. Wang, F. Vizza, Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis, Nature Communications 5(1) (2014) 4036.
    [13] L.G. Bloor, R. Solarska, K. Bienkowski, P.J. Kulesza, J. Augustynski, M.D. Symes, L. Cronin, Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer, Journal of the American Chemical Society 138(21) (2016) 6707-6710.
    [14] C. Guan, H. Wu, W. Ren, C. Yang, X. Liu, X. Ouyang, Z. Song, Y. Zhang, S.J. Pennycook, C. Cheng, Metal–organic framework-derived integrated nanoarrays for overall water splitting, Journal of Materials Chemistry A 6(19) (2018) 9009-9018.
    [15] B. Rausch, M.D. Symes, L. Cronin, A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting, Journal of the American Chemical Society 135(37) (2013) 13656-13659.
    [16] M.D. Symes, L. Cronin, Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer, Nature Chemistry 5(5) (2013) 403-409.
    [17] Y. Xu, B. Zhang, Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions, ChemElectroChem 6(13) (2019) 3214-3226.
    [18] D.B. Adam, M.-C. Tsai, Y.A. Awoke, W.-H. Huang, Y.-W. Yang, C.-W. Pao, W.-N. Su, B.J. Hwang, Iodide Oxidation Reaction Catalyzed by Ruthenium–Tin Surface Alloy Oxide for Efficient Production of Hydrogen and Iodine Simultaneously, ACS Sustainable Chemistry & Engineering 9(26) (2021) 8803-8812.
    [19] I.E. Agency, World energy outlook, OECD/IEA Paris2009.
    [20] K. Alanne, S. Cao, An overview of the concept and technology of ubiquitous energy, Applied Energy 238 (2019) 284-302.
    [21] U. Desa, World population prospects 2019: Highlights, New York (US): United Nations Department for Economic and Social Affairs 11(1) (2019) 125.
    [22] J.C. Radcliffe, The water energy nexus in Australia–the outcome of two crises, Water-Energy Nexus 1(1) (2018) 66-85.
    [23] J. Zhang, Techno-economic analysis and optimization of distributed energy systems, Mississippi State University2018.
    [24] L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.-J. Liu, Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks, Science 362(6420) (2018) 1276-1281.
    [25] J.A. Turner, A realizable renewable energy future, Science 285(5428) (1999) 687-689.
    [26] W. Wang, F. Lv, B. Lei, S. Wan, M. Luo, S. Guo, Tuning nanowires and nanotubes for efficient fuel‐cell electrocatalysis, Advanced Materials 28(46) (2016) 10117-10141.
    [27] F. Dawood, M. Anda, G. Shafiullah, Hydrogen production for energy: An overview, International Journal of Hydrogen Energy 45(7) (2020) 3847-3869.
    [28] H. Balat, E. Kırtay, Hydrogen from biomass–present scenario and future prospects, International Journal of Hydrogen Energy 35(14) (2010) 7416-7426.
    [29] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, International Journal of Hydrogen Energy 40(34) (2015) 11094-11111.
    [30] R. Kothari, D. Buddhi, R. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods, Renewable and Sustainable Energy Reviews 12(2) (2008) 553-563.
    [31] H.L. Chen, H.M. Lee, S.H. Chen, Y. Chao, M.B. Chang, Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration, and prospects, Applied Catalysis B: Environmental 85(1-2) (2008) 1-9.
    [32] A. Ersöz, Investigation of hydrocarbon reforming processes for micro-cogeneration systems, International Journal of Hydrogen Energy 33(23) (2008) 7084-7094.
    [33] S. Lee, H.S. Kim, J. Park, B.M. Kang, C.-H. Cho, H. Lim, W. Won, Scenario-based techno-economic analysis of steam methane reforming process for hydrogen production, Applied Sciences 11(13) (2021) 6021.
    [34] N. Muradov, How to produce hydrogen from fossil fuels without CO2 emission, International Journal of Hydrogen Energy 18(3) (1993) 211-215.
    [35] K. Hu, J. Fang, X. Ai, D. Huang, Z. Zhong, X. Yang, L. Wang, Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling, Applied Energy 312 (2022) 118788.
    [36] S. Zhao, Thermochemical processes for biohydrogen production, Waste to Renewable Biohydrogen, Elsevier2021, pp. 139-177.
    [37] F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Solar Energy 78(5) (2005) 661-669.
    [38] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy 38(12) (2013) 4901-4934.
    [39] Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, Journal of Power Sources 366 (2017) 33-55.
    [40] F. ezzahra Chakik, M. Kaddami, M. Mikou, Effect of operating parameters on hydrogen production by electrolysis of water, International Journal of Hydrogen Energy 42(40) (2017) 25550-25557.
    [41] L.B. Brentner, J. Peccia, J.B. Zimmerman, Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda, Environmental Science & Technology 44(7) (2010) 2243-2254.
    [42] S.M. Kotay, D. Das, Biohydrogen as a renewable energy resource—prospects and potentials, International Journal of Hydrogen Energy 33(1) (2008) 258-263.
    [43] S. Mona, S.S. Kumar, V. Kumar, K. Parveen, N. Saini, B. Deepak, A. Pugazhendhi, Green technology for sustainable biohydrogen production (waste to energy): a review, Science of the Total Environment 728 (2020) 138481.
    [44] E. Sagir, S. Alipour, Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges, Renewable and Sustainable Energy Reviews 141 (2021) 110796.
    [45] J.R. Bolton, S.J. Strickler, J.S. Connolly, Limiting and realizable efficiencies of solar photolysis of water, Nature 316(6028) (1985) 495-500.
    [46] C. Sui, H. Wang, X. Liu, X. Hu, Solar thermochemical water-splitting reaction enhanced by hydrogen permeation membrane, arXiv preprint arXiv:1808.02175 (2018).
    [47] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358) (1972) 37-38.
    [48] O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280(5362) (1998) 425-427.
    [49] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, International Journal of Hydrogen Energy 26(7) (2001) 653-659.
    [50] R.M. Navarro, M. Pena, J. Fierro, Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass, Chemical Reviews 107(10) (2007) 3952-3991.
    [51] P. Chen, Y. Tong, C. Wu, Y. Xie, Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis, Accounts of Chemical Research 51(11) (2018) 2857-2866.
    [52] J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, Anion and cation modulation in metal compounds for bifunctional overall water splitting, ACS Nano 10(9) (2016) 8738-8745.
    [53] E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W.D. Lou, Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting, Energy & Environmental Science 11(4) (2018) 872-880.
    [54] Y. Tong, Q. Sun, P. Chen, L. Chen, Z. Fei, P.J. Dyson, Nitrogen‐incorporated cobalt sulfide/graphene hybrid catalysts for overall water splitting, ChemSusChem 13(18) (2020) 5112-5118.
    [55] H. Jin, B. Ruqia, Y. Park, H.J. Kim, H.S. Oh, S.I. Choi, K. Lee, Nanocatalyst design for long‐term operation of proton/anion exchange membrane water electrolysis, Advanced Energy Materials 11(4) (2021) 2003188.
    [56] I. Vincent, D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable and Sustainable Energy Reviews 81 (2018) 1690-1704.
    [57] G. Gebel, Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution, Polymer 41(15) (2000) 5829-5838.
    [58] M.B. Karimi, F. Mohammadi, K. Hooshyari, Recent approaches to improve Nafion performance for fuel cell applications: A review, International Journal of Hydrogen Energy 44(54) (2019) 28919-28938.
    [59] K.A. Mauritz, R.B. Moore, State of understanding of Nafion, Chemical Reviews 104(10) (2004) 4535-4586.
    [60] A.-L. Rollet, O. Diat, G. Gebel, A new insight into Nafion structure, The Journal of Physical Chemistry B 106(12) (2002) 3033-3036.
    [61] K. Schmidt-Rohr, Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes, Nature Materials 7(1) (2008) 75-83.
    [62] J. Bitter, Effect of crystallinity and swelling on the permeability and selectivity of polymer membranes, Desalination 51(1) (1984) 19-35.
    [63] S. Kim, R. Ou, Y. Hu, X. Li, H. Zhang, G.P. Simon, H. Wang, Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination, Journal of Membrane Science 562 (2018) 47-55.
    [64] M.B. Satterfield, J.B. Benziger, Non-Fickian water vapor sorption dynamics by Nafion membranes, The Journal of Physical Chemistry B 112(12) (2008) 3693-3704.
    [65] U.R. Farooqui, A.L. Ahmad, N. Hamid, Graphene oxide: A promising membrane material for fuel cells, Renewable and Sustainable Energy Reviews 82 (2018) 714-733.
    [66] W. Yu, L. Sisi, Y. Haiyan, L. Jie, Progress in the functional modification of graphene/graphene oxide: A review, RSC Advances 10(26) (2020) 15328-15345.
    [67] N.P. Shetti, S.J. Malode, D.S. Nayak, G.B. Bagihalli, K.R. Reddy, K. Ravindranadh, C.V. Reddy, A novel biosensor based on graphene oxide-nanoclay hybrid electrode for the detection of Theophylline for healthcare applications, Microchemical Journal 149 (2019) 103985.
    [68] S. Kumar, S.D. Bukkitgar, S. Singh, Pratibha, V. Singh, K.R. Reddy, N.P. Shetti, C. Venkata Reddy, V. Sadhu, S. Naveen, Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications, ChemistrySelect 4(18) (2019) 5322-5337.
    [69] M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes, Chemical Engineering Journal 309 (2017) 151-158.
    [70] J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Hole and electron extraction layers based on graphene oxide derivatives for high‐performance bulk heterojunction solar cells, Advanced Materials 24(17) (2012) 2228-2233.
    [71] Q. Li, F. Fan, Y. Wang, W. Feng, P. Ji, Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent, Industrial & Engineering Chemistry Research 52(19) (2013) 6343-6348.
    [72] Y. Feng, Z. Wang, R. Zhang, Y. Lu, Y. Huang, H. Shen, X. Lv, J. Liu, Anti-fouling graphene oxide based nanocomposites membrane for oil-water emulsion separation, Water Science and Technology 77(5) (2018) 1179-1185.
    [73] Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs, Journal of the American Chemical Society 130(33) (2008) 10876-10877.
    [74] R. Nair, H. Wu, P.N. Jayaram, I.V. Grigorieva, A. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes, Science 335(6067) (2012) 442-444.
    [75] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80(6) (1958) 1339-1339.
    [76] S. Ayyaru, Y.-H. Ahn, Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes, Journal of Membrane Science 525 (2017) 210-219.
    [77] IOWA State University Chemical Instumentation Facility, Diffraction basics Retrieved July 17th (2023), https://www.cif.iastate.edu/services/acide/xrd-tutorial/xrd.
    [78] M. Mirza-Aghayan, M.M. Tavana, R. Boukherroub, Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation, Ultrasonics Sonochemistry 29 (2016) 371-379.
    [79] D. He, Z. Kou, Y. Xiong, K. Cheng, X. Chen, M. Pan, S. Mu, Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts, Carbon 66 (2014) 312-319.
    [80] F. Liu, J. Sun, L. Zhu, X. Meng, C. Qi, F.-S. Xiao, Sulfated graphene as an efficient solid catalyst for acid-catalyzed liquid reactions, Journal of Materials Chemistry 22(12) (2012) 5495-5502.
    [81] Q. Zhao, P. Majsztrik, J. Benziger, Diffusion and interfacial transport of water in Nafion, The Journal of Physical Chemistry B 115(12) (2011) 2717-2727.
    [82] T. Miyake, M. Rolandi, Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices, Journal of Physics: Condensed Matter 28(2) (2015) 023001.
    [83] Q. Li, Q. Yin, Y.-S. Zheng, Z.-J. Sui, X.-G. Zhou, D. Chen, Y.-A. Zhu, Insights into hydrogen transport behavior on perovskite surfaces: transition from the grotthuss mechanism to the vehicle mechanism, Langmuir 35(30) (2019) 9962-9969.

    無法下載圖示 全文公開日期 2028/08/17 (校內網路)
    全文公開日期 2028/08/17 (校外網路)
    全文公開日期 2028/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE