簡易檢索 / 詳目顯示

研究生: LE MINH VIEN
LE - MINH VIEN
論文名稱: Cerium pyrophosphate for proton exchange membrane fuel cell at intermediate temperature
Cerium pyrophosphate for proton exchange membrane fuel cell at intermediate temperature
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 蘇威年
Wei-nen Su
陳燿騰
Yaw-Terng Chern
周振嘉
Chen-Chia Chou
林達鎔
Dar-Jong Lin
許貫中
K.C. Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 122
外文關鍵詞: cerium diphosphate, intermediate temperature fuel cell, Mg-doped cerium pyrophosphate
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    藉由磷酸將氧化鈰溶解製備出摻雜與未摻雜焦磷酸鈰。本研究將探討其質子導電率與水分影響並應用於中溫層的質子交換膜燃料電池的發展性。
    在起始鈰與磷的比例為1比2~2.4間,在300與450oC下一純相的CeP2O7的鈰與磷的比例約為1比2.3,而在較高的溫度下合成時會導致其他雜相生成,其裂解溫度在750oC以上。CeP2O7的結晶結構可是為一擬立方晶相,但實際上為三斜晶。在300、450、600、750與900oC燒結的CeP2O7以450oC擁有較高的質子導電率,其在120~180oC間,通入濕空氣(其水分壓為0.114 atm)時所測得質子導電率皆超過0.01 Scm-1,且於180oC時測得3x10-2 Scm-1。藉由傅立葉紅外線光譜儀(FT-IR)確認燒結450oC時粉末的吸濕性比燒結300oC時粉末高。以厚度0.5mm CeP2O7電解質所製備之電池,在200oC下通入50 %H2與空氣時,擁有電功率密度為22 mWcm-2。
    在鈰的位置摻雜鎂不僅可以提升其導電性且使得其工作溫度範圍變得寬。藉由傅立葉紅外線光譜儀(FT-IR)發現鎂摻雜焦磷酸鈰比未摻雜焦磷酸鈰擁有更佳的保濕性並由熱重分析儀(TGA)確認以10 mol%鎂摻雜的焦磷酸鈰比未摻雜焦磷酸鈰在濕空氣中可以吸收更多的水分。
    在電性量測分面,以10 mol%鎂摻雜焦磷酸鈰電解質所製備之電池,在操作溫度140~260oC間,通入50 %H2濕空氣(其水分壓為0.114 atm)量測,以0.36mm厚度的電解質與其搭配陰陽極為CMP : Pt/C : PTFE (42.5: 42.5:15)在240oC時擁有較佳電功率密度表現達40 mWcm-2且開環電壓為0.65 V。


    ABSTRACT

    Doped and un-doped cerium pyrophosphates have been prepared via phosphoric acid digestion of cerium oxide. Their proton conductivities and water affinities are studied with the aim of developing a proton exchange membrane fuel cell at intermediate temperatures.
    Among the starting Ce:P ratios between 1:2.0 and 1:2.4, a pure CeP2O7 phase is prepared with the 1:2.3 ratio at 300 and 450oC. Higher synthesis temperatures lead to impurity phases. Extensive decomposition occurs at temperature above 750oC. Crystal structure of CeP2O7 may be described using a pseudo-cubic cell, but more precisely a triclinic cell. The 450oC-sintered CeP2O7 disk exhibits a higher proton conductivity, compared with 300, 600, 750, 900oC-sintered specimens. The proton conductivity of CeP2O7 is more than 0.01 S cm-1 between 120 and 180oC in moist air of water partial pressure PH2O=0.114atm, with a maximum value of 3.010-2 S cm-1 at 180oC. The conductivity depends on humidity and operating temperature. FT-IR results confirm that 450oC-sintered powder is more hygroscopic than 300oC-sintered powder. A fuel cell using 0.5 mm thick CeP2O7 electrolyte is evaluated used 50%H2 and air as fuel and oxidant. Its peak powder density is 22 mW cm-2 at 200oC.
    Partial substitution of Mg not only raises the conductivity, but also shifts and widens the relevant temperature window. FTIR results indicate that Ce0.9Mg0.1P2O7 is more capable in retaining water than CeP2O7. The TGA results confirm that the 10 mol% Mg-doped CeP2O7 can absorb more water from moist air than that of un-doped CeP2O7.

    Performance of a fuel cell using Ce0.9Mg0.1P2O7 electrolyte is investigated in the temperature range of 140 - 260oC under humidified air PH2O=0.114 atm. The fuel cell generates power 40 mW cm-2 when consuming 50% hydrogen at 240oC and 0.65V, using 0.36 mm thick Ce0.9Mg0.1P2O7 and the catalyst ink with CMP:Pt/C:PTFE ratio of 42.5:42.5:15 for anode and cathode.

    ABSTRACT i ACKNOWLEDGEMENTS v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiv LIST OF TABLES xiv LIST OF ABBREVIATIONS AND SYMBOLS xv Chapter 1 Fuel cell as an efficient energy conversion device 1 1.1 Principle of fuel cells 1 1.1.1 Fuel cell thermodynamics and performance 3 1.1.1.1 Fuel cell efficiency: 3 1.1.1.2 Fuel cell performance: 4 1.1.2 Classification 6 1.2 Proton Exchange membrane fuel cells (PEMFCs) and components 9 1.2.1 Membrane 11 1.2.2 Catalyst layers 12 1.2.3 Gas diffusion layer (GDL) 13 1.2.4 Bipolar plate 14 1.3 Proton transport mechanism and proton conducting materials 14 1.3.1 Proton conducting mechanism 14 1.3.2 Proton conducting materials: 16 1.3.2.1 Proton conduction mechanism in liquid state 16 1.3.2.2 Proton conduction mechanism in solid state 17 Chapter 2 Raising the temperature of exchange membrane fuel cell 25 2.1 Potential advantages of intermediate-temperature fuel cells 25 2.1.1 High CO tolerance: 25 2.1.2 Elimination of external humidification 26 2.1.3 Direct use of alternative fuels: 26 2.1.4 Reducing platinum catalyst loading or adopting non-platinum catalyst: 27 2.2 Potential disadvantages: 27 Aim and organization of this thesis 29 Chapter 3 Experimental details 31 3.1 Sample synthesis: 31 3.2 Sample characterization 32 3.2.1 X-Ray Diffraction 32 3.2.2 Rietveld refinement 32 3.2.3 Electron Microscope 36 3.2.4 Thermal gravimetric analysis 36 3.2.5 Infrared spectroscopy 36 3.2.6 Density measurements 36 3.2.7 Impedance Spectroscopy 37 3.2.8 Fuel cell characterization 38 Chapter 4 Results and discussion 41 4.1 CeP2O7 electrolyte 41 4.1.1 Crystal structure and phase analysis 41 4.1.2 Impedance spectra and proton conductivities of CeP2O7 50 4.1.3 Infrared analysis 58 4.1.4 TG analysis 60 4.1.5 Fuel cell performance using CeP2O7 electrolyte 61 4.2 Mg2+-doped CeP2O7 electrolyte 62 4.2.1 Phase study of Mg2+-doped CeP2O7 62 4.2.2 Impedance spectra and proton conductivities of Mg2+-doped CeP2O7 68 4.2.3 Proton conductivities of metal cations-doped CeP2O7 71 4.2.4 Infrared analysis 73 4.2.5 TG analysis 75 4.2.6 Fuel cell performance using Ce0.9Mg0.1P2O7 76 4.2.6.1 Influence of catalyst components on fuel cell performance 76 4.2.6.2 I-V, I-P characteristics and electrolyte thickness effect 79 4.3 Summary 82 Chapter 5 CONCLUSIONS 83 References 85 LIST OF PUBLISHED PAPERS 98 Curriculum Vitae 99

    1. Frano Barbir, PEM Fuel cells: Theory and practice, Elsevier, 1-13, (2005).
    2. Martin Winter, Ralph J. Brodd, What is batteries, fuel cells and super capacitors? Chem. Rev., 104, 4245-4269, (2004).
    3. Gregor Hoogers, Fuel cell Technology handbook, CRC press, 1-75, (2002).
    4. EG&G Technical service, Fuel cell handbook, 7th ed., West Virginia: U.S Department of Energy; 1.1-7.35, (2004).
    5. Brian C. H. Steele & Angelika Heinzel, Materials for fuel cell technologies. Nature 414, 14, 245-352, (2001).
    6. Tetsuya Uda & Sossina M. Haile, Thin membrane solid acid fuel cell, Electrochem. Solid-State Lett., 8, A245-A246, (2005).
    7. http://www.fctec.com/fctec_types_pem.asp.
    8. Calum R.I. Chisholm, D.A. Boysen, A.N. Papandrev, S. Zecevic, S. Cha, K.A. Sasaki, A. Varga, K.P. Giapis and Sossina M. Haile, From laboratory breakthrough to technology realization: The development path for solid acid fuel cells: Electrochem. Soc. Interface, 53-59, (2009).
    9. Sivapregasen Naidoo, Cesium hydrogen sulphate and cesium dihydrogen phosphate based solid composite electrolyte for fuel cell application, Master thesis, University of the Western Cape, 2005
    10. Wolf Vielstich, Arnold Lamm and Hubert A. Gasteiger, Handbook of fuel cells, fundamentals technology and applications, John Wiley & Son Ltd. Vol. 1, (2003).
    11. Sanjiv Malhotra and Ravindra Datta, Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells. J. Electrochem. Soc., 144, L23-26, (1997).
    12. C. Yang, P. Costamagna, S, Srinivasan, J. Benziger and A.B. Bocarsly, Approach and technical challenges to high temperature operation of proton exchange membrane fuel cells. J. Power Sources 103, 1-9 (2001).
    13. Dane A. Boysen, Sossina M. Haile Hongjian Liu and Richard A. Secco, Conductivity of potassium and rubidium dihydrogen phosphates at high temperature and pressure. Chem. Mater., 16, 693-697, (2004).
    14. S. M. Haile, D. A. Boysen, C. R. I. Chrisholm and R. B. Merle, Solid acids as fuel cell electrolyte, Nature, 410, 910-913, (2001).
    15. R. B. Merle, C. R. Chrisolm, D. A. Boysen, S. M. Haile, Instability of sulfate and selenate solid acids in fuel cell environments, Energy Fuels, 17, 210-215, (2003).
    16. J. Otomo, T. Tamaki, S. Nishida, S. Wand, M. Ogura, T. Kobayashi, C. J. Wen, H. Nagamoto and H. Takahashi, Effect of water vapor on proton conduction of cesium dihydrogen phosphate and application to intermediate temperature fuel cells, J. Appl. Electrochem., 35, 3865-870, (2005).
    17. J. Otomo, N. Minagawa, C. J. Wen, K. Eguchi, H. Takahashi, Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres, Solid state ionics 156, 357-369, (2003).
    18. S. M. Haile, C. R. I. Chrisholm, K. Sasaki, D. A. Boysen and T. Uda, Solid acids proton conductors: from laboratory curiosities to fuel cells electrolytes, Faraday Discuss., 134, 17-39, (2007).
    19. M. Pham-Thi, Ph. Colomban, A. Novak and R. Blinc, Phase transition in superionic conductors CsHSO4 and CsHSeO4. Solid State Commun. 55, 265-270, (1985).
    20. D. A. Boysen, T. Uda, C. R. Chrisolm, S. M. Haile, High-performance solid acids in fuel cells through humidity stability, Sciences, 303, 68-70, (2004).
    21. Z. Li, T. Tang, High-temperature thermal behavior of XH2PO4 (X=Cs, Rb, K, Na) and LiH2PO3, Thermochim. Acta, 501, 59-64, (2010).
    22. Shuichi Yoshimi, Toshiaki Matsui, Ryuji Kikuchi, Koichi Eguchi, Temperature and humidity dependence of the electrode polarization in intermediate-temperature fuel cells employing CsH2PO4/SiP2O7-based composite electrolytes, J. Power Sources, 179 (2008) 497-503.
    23. Mikhail Kislitsyn and Sossina M. Haile. Influent of silica nanoparticles on the crystallization behavior of and proton relaxation in cerium hydrogen sulfate, Chem. Mater., 22, 2417-2426, (2010).
    24. J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett, Fuel cell handbook, 4th ed., U.S. Department of Commerce, 6.1-6.24, (1998)
    25. Jiujun Zhang, PEM fuel cell electrocatalysts and catalyst layer, fundamentals and applications, Springer, 5-25, 2008.
    26. J. Lobato, M.A. Rodrigo, J.J. Linares, K. Scout, Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells, J. Power Sources, 157, 284-292, (2006).
    27. T. R. Ralph and M. P. Hogarth, Catalysis for low temperature fuel cells, part 1: The cathode challenges, Platinum Metals Rev., 1, 3-14, (2002).
    28. S. –J. Shin, J. –K. Lee, H.-Y Ha, S.-A. Hong, H.-S. Chun, I.-H. Oh, Effect of the catalyst ink preparation method on the performance of polymer electrolyte membrane fuel cells, J. Power Sources, 106, 146-152, (2002).
    29. Viral Mehta, Joyce Smith Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources 114, 32-53, (2003).
    30. S. Lister, G. McLean, PEM fuel cell electrodes, J. Power Sources, 130, 61-67, (2004).
    31. Tetsuya Uda, Dane A. Boysen, Calum R. I. Chrisholm, and S. M. Haile. Alcohol Fuel cells at optimal temperatures. Electrochem. Solid-State Lett., 9, A261-A264, (2006).
    32. Xilin Chen, Chunsheng Wang, E. Andrew Payzant, Changrong Xia, and Deryn Chu. An oxide ion and proton co-ion conducting Sn0.9In0.1P2O7 electrolyte for intermediate-temperature fuel cells. J. Electrochem. Soc., 155, (12), B1264-B1269, (2008).
    33. R. Benitez, J. Soler and L. Daza. Novel method for preparation of electrodes by the electrospray technique, J. Power Sources, 151, 108-113, (2005).
    34. J.M. Song, S.Y. Cha and W.M. Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, J. Power Sources 94, 78–84, (2001).
    35. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti and L. Giorgi, Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells, Electrochim. Acta, 43, 3665–3673, (1998).
    36. G. Sasikumar, J.W. Ihm and H. Ryu, Dependence of optimum Nafion content in catalyst layer on platinum loading, J. Power Sources, 132, 11–17, (2004).
    37. G.S. Kumar, M. Raja and S. Parthasarathy, High performance electrodes with very low platinum loading for polymer electrolyte fuel cells, Electrochim. Acta, 40, 285–290, (1995).
    38. L. Giorgi, E. Antolini, A. Pozio and E. Passalacqua, Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells, Electrochim. Acta, 43, 3675–3680, (1998).
    39. F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti and L. Giorgi, Improvement in the diffusion characteristic of low-Pt loaded electrodes for PEFCs, J. Appl. Electrochem., 445–448, (1999).
    40. D. Bevers, N. Wagner and M. von Bradke, Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures, Int. J. Hydrogen Energy, 23, 57–63, (1998).
    41. E.J. Taylor, E.B. Anderson and N.R.K. Vilambi, Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange membrane fuel cells, J. Electrochem. Soc., 139, L45–L46 (1992).
    42. O. Antoine and R. Durand, In situ electrochemical deposition of Pt nanoparticles on carbon and inside nafion electrochem. Solid-State Lett., 4, A55–A58, (2001).
    43. Zhigang Qi, Arthur Kaufman, Improvement of water management by a micro porous sublayer for PEM fuel cells. J. Power Sources, 109, 38-46, (2002).
    44. Klaus Dieter Kreuer, Proton conductivity: Materials and applications, Chem. Mater., 8, 610-641, (1996).
    45. K.D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci., 185, 29-39, (2001).
    46. Bonanos, N., Transport properties and conduction mechanism in high temperature protonic conductors, Solid State Ionics, 53-56, 967-974, (1992).
    47. Norby, T., Solid state protonic conductors: principles, properties, progress and prospects, Solid State Ionics 125, 1-11, (1999).
    48. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Transport in proton conductors for fuel cell applications: Simulations, elementary reaction and phenomenology, Chem. Rev., 104, 4637-4678, (2004).
    49. P. Choi, N. H. JAlani, and R. Datta, Thermodynamic and proton transport in Nafion, J. Electrochem. Soc., 152, 3, E123-E130, (2005).
    50. M. Saiful Islam, Ionic transport in ABO3 perovskite oxides: a computer modeling tour, J. Mater. Chem., 10, 1027-1038, (2000).
    51. Harlan U. Anderson, Review of p-type doped perovskite materials for SOFC and other applications, Solid State Ionics, 52, 33-41, (1992).
    52. S. V. Bhide and A. V. Virkar. Stability of BaCeO3-based proton conductors in water containing atmospheres. J. Electrochem. Soc., 146, 2038-2044, (1999).
    53. H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, Proton conduction in sintered oxides based on BaCeO3, J. Electrochem. Soc., 135, 529-533, (1988).
    54. Z. Wu and M. Liu, Stability of BaCe0.8Gd0.2O3 in H2O containing atmosphere at intermediate temperatures. J. Electrochem. Soc., 144, 2170-2175, (1997).
    55. Koji Katahira, Yoshirou Kohchi, Tessuo Shimura, Hiroyasu Iwahara, Protonic conduction in Zr-substituted BaCeO3. Solid state Ionics, 138, 91-98, (2000).
    56. Kwang Hyun Ryu, Sossina M. Haile, Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions, Solid state Ionics, 125, 355-367, (1999).
    57. E. Ortiz, R. A. Vargas and B-E. Mellander. Phase behavior of the solid proton conductor ScHSO4. J of physic: Condense matter, 18, 9561-9573, (2006).
    58. Dane A. Boysen, Sossina M. Haile Hongjian Liu and Richard A. Secco. High-temperature behavior of CsH2PO4 under both ambient and high pressure conditions. Chem. Mater. 15, 727-736, (2003).
    59. Dane A. Boysen, C. R. I. Chrisholm, Sossina M. Haile and S. R. Narayanan, Polymer solid acid composite membranes for fuel cell applications, J. Electrochem. Soc., 147, 3610-3613, (2000).
    60. D. A. Boysen, Superprotonic Solid Acids: Structure, properties, and applications, PhD Thesis, California Institute of Technology, Pasadena, California, 2004.
    61. W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu, Solid acid membrane for high temperature (>140oC) proton exchange membrane fuel cells. J. Power Sources, 142, 223-237, (2005).
    62. F. Bauer, M. Willert-Porada. Zirconium phosphate Nafion composites- a microstructure-based explanation of mechanical and conductivity properties. Solid State Ionics, 177, 2391-2396, (2006).
    63. Jianlu Zhang, Yanghua Tang, Chaojie Song, Jiujun Zhang, Polybenzimidazol-membrane-based PEM fuel cell in the temperature range of 120-200oC. J. Power Sources, 1 72, 163-171, (2007).
    64. P. Costamagna, C. Yang, A. B. Bocarsly and S. Srinivasan, Nafion 115/zirconium phosphate composite membranes for operation of PEMFCs above 100oC., J. Electrochim. Acta, 47, 1023-1033, (2002).
    65. W. Grot, C. Ford, G. Rajendran, D. Newark, United States Patent no. 5919583 (1999).
    66. R. Samms, S. Wasmus, R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc., 143, 1225-1232, (1996).
    67. Deborah J. Jones, Jacques Rozière, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci. 185, 41-58, (2001).
    68. O.E. Kongstein, T. Berning, B. Borresen, F. Seland, R. Tunold, Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazol (PBI) membranes. Energy, 32, 418-422, (2007).
    69. Ronghuan He, Qingfeng Li, Gang Xiao, Niels J. Bjerrum. Proton conductivity of phosphoric acid doped polybenzimidazole and it’s composite with inorganic proton conductors, J. Membr. Sci. 226, 169-184, (2003).
    70. J.S. Wainright, J.-T. Wang, D. Weng, R.F. Savinell, M. Litt, Acid-doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc.142, L121-L123, (1995).
    71. R. Bouchet and E. Siebert, Proton conduction in acid doped polybenzimidazole, Solid State Ionics 118, 287-299, (1999).
    72. J.-T. Wang, R.F. Savinell. J. Wainright, M. Litt and H. Yu. A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim. Acta, 41, 193-197, (1996).
    73. Y.L. Ma, J.S. Wainright, M.H. Litt, R.F. Savinell, Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells, J. Electrochem. Soc., 151, A8-A16, (2004).
    74. M. Mamlouk and K. Scott, Phosphoric acid-doped electrodes for PBI polymer membrane fuel cell. Int. J. Energy. Res. 35, 507-519 (2011).
    75. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J Membr. Sci. 173, 17-34, (2000).
    76. Y. Jiang, T. Matthieu, R. Lan, X. Xu, P.I. Cowin, S. Tao, A stable NH4PO3-glass proton conductor for intermediate temperature fuel cell. Solid State Ionics doi:10.1016 /j.ssi.2010.11.028, (2010).
    77. C.W. Sun, U. Stimming, Synthesis and characterization of NH4PO3 based composite with superior proton conductivity for intermediate temperature fuel cells. Electrochim. Acta, 53, 6417-6422, (2008).
    78. T. Matsui, S. Takeshita, Y. Iriyama, T. Abe, Z. Ogumi, Proton-conductive electrolyte consisting of NH4PO3/TiP2O7 for intermediate-temperature fuel cells. J. Electrochem. Soc. 152, A167-A170, (2005).
    79. Y.C Jin, Takashi Hibino. A proton-conducting composite membrane: Sn0.95Al0.05P2O7 and polystyrene-b-poly(ethylene/propylene)-b-polystyrene. Electrochim. Acta, 55, 8371-8375, (2010).
    80. Y.C Jin, K. Fujiwara and Takashi Hibino. High temperature, low humidity proton exchange membrane based on an inorganic-organic hybrid structure, Electrochem. Solid-State Lett. 13, B8-B10, (2010).
    81. Y.C. Jin, Y.B. Shen, T. Hibino, proton conduction in metal pyrophosphates (MP2O7) at intermediate temperatures, J. Mater. Chem. 20, 6214-6217, (2010).
    82. Y.C. Jin, M. Nishida, W, Kanematsu, T. Hibino. An H3PO4-doped polybenzimidazole (PBI)/ Sn0.95Al0.05P2O7 composite membrane for high-temperature proton exchange membrane fuel cells. J. Power Sources doi:10.1016/j.jpowsour.2011.03.094, (2011).
    83. Y.C. Jin, M. Okada, T. Hibino. A comparative study of Pt/C cathodes in Sn0.95Al0.05P2O7 and H3PO3 ionomers for high-temperature proton exchange membrane fuel cells. J. Power Sources, 196, 4905-4910. (2011).
    84. X. Sun, S. Wang, Z. Wang, X. Ye, T. Wen, F. Huang, Proton conductivity of CeP2O7 for intermediate temperature fuel cells. Solid State Ionics, doi:10.116/j.ssi.2008.01.046, (2008).
    85. W.H.J. Hogarth, S.S. Muir, A.K. Whittaker, J.C. Diniz da Costa, J. Drennan, G.Q. Lu, Proton conduction mechanism and the stability of sol-gel titanium phosphates, Solid State Ionics, 177, 3389-3394, (2007).
    86. H. Li, D. Jin, X. Kong, H. Tu, Q. Yu, F. Jiang. High proton-conducting monolithic phosphosilicate glass membranes. Microporous Mesoporous Mater. 138 63-67, (2011).
    87. M. Nagao, A. Takeuchi, P. Heo, T. Hibino, M. Sano and A. Tomita, A proton-conducting In3+-doped SnP2O7 electrolyte for intermediate-temperature fuel cells, Electrochem. Solid-State Lett. 9, A105–A109, (2006).
    88. P. Heo, M. Nagao, T. Kamiya, M. Sano, A. Tomita, T. Hibino, Sn0.9In0.1P2O7-based organic/inorganic composite membranas application to intermediate temperature fuel cells, J. Electrochem. Soc. 154, B63-B67, (2007).
    89. M. Nagao, T. Kamiya, P. Heo, A. Tomita, T. Hibino, M. Sano, Proton conduction in In3+-doped SnP2O7 at intermediate temperature J. Electrochem. Soc. 153, A1604-A1609, (2006).
    90. A. Tomita, N. Kajiyama, T. Kamiya, M. nagao and T. Hibino, Intermediate-temperature proton conducion in Al3+-doped SnP2O7, J. Electrochem. Soc., 154, B1265-B1269, 2007.
    91. Q. Li, R. He, J. Gao, J. O. Jensen, and N.J. Bjerrum. The CO poisoning effect in PEMFCs operational at temperatures up to 200oC. J. Electrochem. Soc. 150, A1599-A1605, (2003).
    92. Q. Li, R. He, J.O. Jensen, and N.J. Bjerrum. Approaches and recent development of polymer electrode membranes for fuel cells operating above 100oC. Chem. Mater. 15, 4896, (2003).
    93. J. Holladay, J. Wainright, E. Jones and S.R. Gano, Power generation using a mesoscale fuel cell integrated with a microscale fuel processor. J. Power Sources 130, 111-118, (2004).
    94. P. Heo, H. Shibata, M. Nagao, T. Hibino, M. Sano, Perfomance of an intermediate temperature fuel cell using a proton conducting Sn0.9In0.1P2O7 electrolyte. J. Electrochem. Soc., 153, A897-A901, (2006).
    95. M.F.H. Schuster, W.H. Meyer, M. Schuster, K.D. Kreuer, Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem. Mater. 16, 329-337, (2004).
    96. M. Yamada, I. Honma, Alginic acid-imidazole composite material as anhydrous proton conducting membrane, Polymer 45, 8349-8354, (2004).
    97. Li, Q.; Hjuler, H. A.; Hasiotis, C.; Kallitsis, J. K.; Kontoyannis, C. G.; Bjerrum, N. A Quasi-direct methanol fuel cells based on blend polymer membrane electrolyte. J. Electrochem. Solid-State Lett., 5, A125-A128, (2002).
    98. P. Heo, H. Shitaba, M. Nagao, T. Hibino, Pt free intermediate temperature fuel cells. Solid state ionics, doi:10.1016/j.ssi.2007.12.090, (2007)
    99. T. Matsui, N. Kazusa, Y. Kato, Y. Iriyama, T. Abe, K. Kikuchi, Z. Ogumi, Effect of pyrophosphates as supporting matrices on proton conductivity for NH4PO3 composites at intermediate temperatures. J. Power Sources 171, 483-488, (2007).
    100. S.R. Samms, S. Wasmus and R.F. Savinell, Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J. Electrochem. Soc., 143, 1225-1232, (1996).
    101. L.M. Roen, C.H. Paik and T.D. Jarvic, Electrocatalyst corrosion of carbon support in PEM cathodes, Electrochem. Solid-State Lett. 7, A19-A22, (2004).
    102. D.A. Stevens and J.R. Dahn, Thermal degradation of the support in carbon supported platinum electrocatalysts for PEM fuel cells. Carbon 43, 179-188, (2005).
    103. Y.B. Shen, M. nishida, W. Kanematsu and Takashi Hibino, Synthesis and characterization of dense SnP2O7-SnO2 composite ceramic as intermediate-temperature proton conductors, J. Mater. Chem., 21, 663-670, (2011).
    104. M.V. Le, D.S. Tsai, C.Y. Yang, W.H. Chung, H.Y. Lee, Proton conductors of cerium pyrophosphate for intermediate temperature fuel cell. J. Electrochim. Acta. Doi:10.1016/j.electacta.2011.05.040.
    105. D. A. Boysen, PhD. Thesis, Superprotonic Solid acids: Structure, properties and application, California institute of Technology, California, (2004).
    106. B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34, 210–213, (2001).
    107. R. A. Young, editor. The Rietveld method, International Union of Crystallography Monographs on Crystalgraphys. Oxford University Press, New York, (1995).
    108. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer and P. Scardi. Rietveld refinement guidelines. J. Appl. Cryst. 32, 36-50, (1999).
    109. Evganij Barsoukov and J. Ross Macdonald. Impedance Spectroscopy theory, experiment and Application. Second Edition. A John Willey & Son, Inc., Publication, (2005).
    110. K. M. White, Low temperature synthesis and characterization of some low positive and negative thermal expansion materials. PhD Thesis, Georgia Institute of Technology, (2006).
    111. I.S. Ahmed Farag, M.A. Ahmed, S.M. Hammad, A.M. Moustafa, Application of Rietveld method to the structural characteristics of substituted copper ferrite compounds, Cryst. Res. Technol. 36, 85-92, (2001).
    112. H. Birkedal, A.M.K. Andersen, A. Arakcheeva, G. Chapuls, P. Norby, P. Pattison, The room temperature superstructure of ZrP2O7 is orthorhombic: There are no unusual 180o P-O-P bond angles Inorg. Chem. 45 4346-4351, (2006).
    113. K.M. White, P.L. Lee, P.J. Chupas, K.W. Chapman, E.A. Payzant, A.C. Jupe, W.A. Bassett, C.S. Zha, A.P. Wilkinson, Synthesis, symmetry, and physical properties of cerium pyrophosphate, Chem. Mater. 20 3728-3734, (2008).
    114. J. Sanz, J.E. Iglesias, J. Soria, E.R. Losilla, A.G. Aranda, S. Bruque, structural disorder in the cubic 333 superstructure of TiP2O7. XRD and NMR study, Chem. Mater. 9, 996-1003, (1997).
    115. H. Li, D. Jin, X. Kong, H. Tu, Q. Yu, F. Jiang, High proton-conducting monolithic phosphosilicate glass membranes. Microporous Mesoporous Mater., 138 63-67, (2011).
    116. T. Masui, H. Hirai, N. Imanaka, G. Adachi, Characterization and thermal behavior of amorphous cerium phosphate. Phys. Stat. Sol. (a) 198, 364-368, (2003).
    117. Y.C. Jin, B. Lee, T. Hibino, Development and application of SnP2O7-based proton conductors to intermediate temperature fuel cell. J. Jpn. Petrol. Inst., 53, 12-23, (2010).
    118. X. Wu, A. Verma, K. Scott. A Sb-doped SnP2O7 solid proton conductor for intermediate temperature fuel cells. Fuel cells, doi:10.1002/fuce.200800032, (2008).
    119. A.G. Pelmenschikov, J.H.M.C. van Wolput, J. Janchen and R.A. van Santen, (A,B,C) Triplet of infrared OH bands of zeolitic H-complexes. J. Phys. Chem. 99, 3612-3617, (1995).
    120. Kuoji Genzaki, Pilwon Heo, Mitsuru Sano and Takashi Hibino. Proton conductivity and solid acid of Mg-, In-, and Al-Doped SnP2O7. J. Electrochem. Soc., 156, B806-B810, (2009).

    無法下載圖示 全文公開日期 2016/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE