簡易檢索 / 詳目顯示

研究生: 阮江南
Nguyen - Giang Nam
論文名稱: Development of ZnO:Ga Transparent Conducting Oxide Thin Films through Metalorganic Chemical Vapor Deposition using various Zn and Ga Source Materials
Development of ZnO:Ga Transparent Conducting Oxide Thin Films through Metalorganic Chemical Vapor Deposition using various Zn and Ga Source Materials
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 江志強
Jyh-Chiang Jiang
黃鶯聲
Ying-Sheng Huang
陳敏璋
Miin-Jang Chen
盧信冲
Hsin-Chun Lu
邱正杰
Jaychu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 透明導電氧化物氧化鋅有機金屬化學氣相沉積氧化鋅鎵三甲基鎵三乙基鎵
外文關鍵詞: TCO, ZnO, MOCVD, GZO, TMG
相關次數: 點閱:266下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The Ga doped-ZnO (GZO) thin film has been demonstrated to have low resistivity and high transparency in the visible spectral range and that is considered as one of the most promising transparent conducting oxide (TCO) for the next generation of transparent electrode materials. There is still much to be explored and understood about main factor that significantly affect to the properties as well as the cost of GZO film growth process before it can be commercially realized. Most notably, the influence of the type of source materials have surprisingly been received less attention, even though the type of sources actually play critically role not only the quality but also the cost of thin films. In this dissertation, we have developed of GZO TCO thin films through metalorganic chemical vapor deposition (MOCVD) using various Zn source materials. We also explored the methodology to increase the light diffuse transmittance through controlling the preferred orientation of polycrystalline GZO films by MOCVD technique using diethyl zinc (DEZn) as the Zn and trimethylgallium (TMG) as a Ga precursor.
We prepared Ga-doped ZnO (GZO) films with qualified opto-electric properties through chemical vapor deposition of an inexpensive solution of DEZn in n-hexane (ca. 17 wt.%). The GZO films exhibited low resistivity (3.61  10–4 Ω cm) and high transmittance (85%) in the visible range. Interestingly, post-annealing treatment of the GZO films under N2 at 525 °C for just 10 min increased the number of carbon-interstitial oxygen defects (CZn+2Oi)〃, which played the role of acceptors and enhanced the film properties significantly. This approach potentially allows the fabrication of inexpensive transparent conducting oxides for use in solar cells.
Moreover, we also explored the methodology to increase the light diffuse transmittance through controlling the preferred orientation of polycrystalline GZO films grown by the low-pressure chemical vapor deposition (LPCVD) technique. X-ray diffraction measurement indicated that major growth direction was (002) plane and secondary electron microscopy showed that column-like granule structure with planar surface was formed. By depositing a low temperature ZnO layer to serve as a template for high temperature GZO film growth, the main preferred orientation of the GZO films was manipulated to (110) plane and the film surface to the pyramid-like structure. Through this two-step growth, the light diffuse transmittance of the film with a GZO (800 nm)/ZnO (766 nm) combination exhibited 13% increase at 420 nm wavelength due to the preservation of the pyramidal surface morphology.


The Ga doped-ZnO (GZO) thin film has been demonstrated to have low resistivity and high transparency in the visible spectral range and that is considered as one of the most promising transparent conducting oxide (TCO) for the next generation of transparent electrode materials. There is still much to be explored and understood about main factor that significantly affect to the properties as well as the cost of GZO film growth process before it can be commercially realized. Most notably, the influence of the type of source materials have surprisingly been received less attention, even though the type of sources actually play critically role not only the quality but also the cost of thin films. In this dissertation, we have developed of GZO TCO thin films through metalorganic chemical vapor deposition (MOCVD) using various Zn source materials. We also explored the methodology to increase the light diffuse transmittance through controlling the preferred orientation of polycrystalline GZO films by MOCVD technique using diethyl zinc (DEZn) as the Zn and trimethylgallium (TMG) as a Ga precursor.
We prepared Ga-doped ZnO (GZO) films with qualified opto-electric properties through chemical vapor deposition of an inexpensive solution of DEZn in n-hexane (ca. 17 wt.%). The GZO films exhibited low resistivity (3.61  10–4 Ω cm) and high transmittance (85%) in the visible range. Interestingly, post-annealing treatment of the GZO films under N2 at 525 °C for just 10 min increased the number of carbon-interstitial oxygen defects (CZn+2Oi)〃, which played the role of acceptors and enhanced the film properties significantly. This approach potentially allows the fabrication of inexpensive transparent conducting oxides for use in solar cells.
Moreover, we also explored the methodology to increase the light diffuse transmittance through controlling the preferred orientation of polycrystalline GZO films grown by the low-pressure chemical vapor deposition (LPCVD) technique. X-ray diffraction measurement indicated that major growth direction was (002) plane and secondary electron microscopy showed that column-like granule structure with planar surface was formed. By depositing a low temperature ZnO layer to serve as a template for high temperature GZO film growth, the main preferred orientation of the GZO films was manipulated to (110) plane and the film surface to the pyramid-like structure. Through this two-step growth, the light diffuse transmittance of the film with a GZO (800 nm)/ZnO (766 nm) combination exhibited 13% increase at 420 nm wavelength due to the preservation of the pyramidal surface morphology.

Acknowledgments i Abstract ii Table of contents iv List of tables vii List of figures viii List of abbreviations xii Chapter 1 Introduction 1 1.1 Overview about Transparent Conducting Oxide (TCO) 1 1.2 The properties of TCO 2 1.2.1 Electrical properties 2 1.2.2 Optical properties 4 1.3 The major based-TCO materials 4 1.3.1 Indium-based TCO materials (ITO) 4 1.3.2 Tin Oxide (SnO2)-based TCO materials 6 1.3.3 Zinc Oxide-Based TCO materials 7 1.4 Fundamental and properties of ZnO 8 1.4.1 Introduction 8 1.4.2 Crystal structure 10 1.4.3 Lattice parameter 11 1.4.4 Electronic and band structure 12 1.4.5 Electrical properties 13 1.4.6 Doping in ZnO 13 1.4.7 Optical properties of ZnO 15 1.5 Thin Films Growth techniques 16 1.5.1 Chemical Vapor Deposition (CVD) Technique 16 1.5.2 Physical Vapor Deposition (PVD) Technique 17 1.5.3 Spin-coating film deposition process 18 1.6 The motivations and the aim of the present research 20 Chapter 2 Materials, Equipment and Characterization Techniques 24 2.1 Materials 24 2.1.1 Zinc precursors 24 2.1.2 Gallium precursor 24 2.1.3 Water (H2O) 25 2.1.4 Nitrogen (N2) 25 2.1.5 Substrate 25 2.1.6 Acetone 25 2.1.7 Ethanol 25 2.2 Metalorganic chemical vapor (MOCVD) deposition system 26 2.2.1 Pumping system 27 2.2.2 Heating system 27 2.2.3 Mass flow controller 27 2.2.4 Substrate preparation 27 2.3 Experimental procedures 27 2.3.1 Synthesis of GZO films using various Zn precursors 27 2.3.2 Experimental procedure for fabrication of GZO pyramidal texture surface 28 2.4 Thin Films Characterization Techniques 28 2.4.1 X-ray Diffraction (XRD) 28 2.4.2 Surface morphology and thickness of the films 29 2.4.3 Electron Spectroscopy for Chemical Analysis (ESCA)/ X-ray Photoelectron Spectroscopy (XPS) 30 2.4.4 Electrical Characterization of Films 31 2.4.4.1 Hall Measurement of thin films 31 2.4.4.2 Four-point probe measurement of thin films 34 2.4.5 UV-Visible Absorption Spectroscopy (UV-Vis) measurement 36 Chapter 3 Effects of zinc precursor on the properties of ZnO:Ga films prepared through metalorganic chemical vapor deposition 37 3.1 Back ground and motivation 37 3.2 Results and discussion 37 3.2.1 Effect of deposition temperature on the electrical properties of GZO film 37 3.2.2 Morphology and structure of synthesized GZO thin films prepared using the solution-based Zn precursor 38 3.2.3 Electrical and optical properties of synthesized GZO thin films prepared using the solution-based Zn precursor 41 3.2.4 Effect of annealing on properties of GZO thin films prepared using the solution-based Zn precursor 43 3.2.5 Effect of annealing on properties of GZO thin films prepared using the pure Zn precursor. 48 3.3 Conclusions 51 Chapter 4 Preferred orientation control of Ga doped ZnO films prepared through MOCVD for light scattering enhancement 52 4.1 Back ground and motivation 52 4.2 Results and discussion 53 4.2.1 Effect of growth temperature on the orientation of GZO films. 53 4.2.2 Effect of ZnO buffer layer thicknesses on the orientation of GZO films 54 4.3 Conclusions 61 Chapter 5 Conclusions 62 Supporting Information 64 References 66 List of publications 74 List of conference/seminar 75

[1] K. Baedeker, Ann. Phys. (Leipzig), 22, 749 (1907).
[2] S. J. Laverty and P. D. Maguire, J. Vac. Sci. Technol. B 19, 1 (2001).
[3] S. I. Kim, S. H. Cho, S. R. Choi, M. C. Oh, J. H. Jang, P. K. Song, Thin Solid Films, 517, 4061 (2009).
[4] U. Dagkaldiran, A. Gordijn, F. Finger, H.M. Yates, P. Evans, D.W. Sheel, Z. Remes, M. Vanecek, Materials Science and Engineering: B, 159–160, 6 (2009).
[5] M. Fukawa, K. Sato, T. Tsukamoto, K. Adachi, H. Nishimura, Sol. Energy Mater. Sol. Cells, 49, 107 (1997).
[6] P. K. Shin, Y. Aya, T. Ikegami, K. Ebihara, Thin Solid Films, 516, 3767 (2008).
[7] D. C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Thin Solid Films, 516, 5894 (2008).
[8] H. Kim, J.S. Horwitz, W.H. Kim, A.J. Makinen, Z.H. Kafafi, D.B. Chrisey, Thin Solid Films, 420–421, 539 (2002).
[9] E. Nam, Y. H. Kang, D. Jung, Y. S. Kim, Thin Solid Films, 518, 6245 (2010).
[10] P. P. Edwards, A. Porch, M. O. Jones, D. V. Morgan, and R. M. Perks, Dalton Trans. 19, 2995 (2004).
[11] J.R. Bellingham, W.A. Phillips, and C.J. Adkins, J. Phys. Matter, 2, 6207 (1992).
[12] D. Chattopadhyay, H.J. Queisser, Rev. Mod. Phys., 53, 745 (1981).
[13] P. Ebert, Z. Zhang, F. Kluge, M. Simon, Z. Zhang, K. Urban, Phys. Rev.Lett., 83, 757 (1999).
[14] E. Burstein, Phys. Rev. 93, 632 (1954).
[15] T.S. Moss, Proc. Phys. Soc. London. B 67, 775 (1954).
[16] R. Latz, K. Michael and M. Scherer, Jpn. J. Appl. Phys. 30, L149 (1991).
[17] Y. Shigesato, S. Takaki and T. Haranoh, J. Appl. Phys. 71, 3356 (1992).
[18] H. Kimura, H. Watanabe, S. Ishihara, Y. Suzuki and T. Ito, Shinku 30, 6 (1987).
[19] K. Utsumi, O. Matsunaga and T. Takahata, Thin Solid Films, 344, 30 (1998).
[20] K. Utsumi, H. Iigusa, R. Tokumaru, P. K. Song and Y. Shigesato, Thin Solid Films 445, 229 (2003).
[21] David S. Ginley, Hideo Hosono, David C. Paine, Handbook of Transparent Conductors, Springer 2010, p 151.
[22] W. H. Baur, and A. A. Khan, Acta Crystallogr. B 27, 2133 (1971).
[23] E. Elangovan and K. Ramamurthi, Cryst. Res. Technol. 38, 779 (2003).
[24] J. Bardeen, W.H. Brattain, Phys. Rev. 74, 230. (1948).
[25] A.R. Hutson, Phys. Rev. Lett. 4, 505 (1960).
[26] F.S. Hickernell, Proc. IEEE 64, 631 (1976).
[27] C. W. Bunn, Proc. Phys. Soc. London 47, 835 (1935).
[28] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003).
[29] S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Progress in Materials Science, 50, 293 (2005).
[30] http://en.wikipedia.org/wiki/Wurtzite_crystal_structure
[31] Bond, W.L. Acta Crystallographica, 13, 814 (1960).
[32] Karzel, H., Potzel, W., K €offerlein, M., Schiessl, W., Steiner, M., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K. and Pasternak, M.P. Physical Review B: Condensed Matter, 53, 11425 (1996).
[33] Kisi, E. and Elcombe, M.M. Acta Crystallographica Section C. Crystal Structure Communications, 45, (1867 (1989).
[33] Catti, M., Noel, Y. and Dovesi, R. Journal of Physics and Chemistry of Solids, 64, 2183 (2003).
[35] E. Mollwo, in “Landoldt-Bornstein. Zahlenwerte und Funktionen aus Naturwiss. u. Technik. Neue Serie”, Ed.: O. Madelung, M. Schulz and H. Weiss (Springer-Verlag, Berlin u.a., (1982), p. 35.
[36] Hadis Morkoc and Umit Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology, WILEY-VCH Verlag GmbH & Co. KGaA, 2009, p 21-22.
[37] G. Heiland, E. Mollwo, F. Stockmann, Solid State Phys. 8, 191 (1959).
[38] E. Harrison, Phys. Rev. 93, 52 (1954).
[39] D. G. Thomas, J. Phys. Chem. Solids 3, 229 (1957).
[40] Wonkyun Yang, S.M. Rossnagel, Junghoon Joo, Vacuum, 86, 1452 (2012).
[41] L.M. Wong, S.Y. Chiam, J.Q. Huang, S.J. Wang, W.K. Chim, J.S. Pan, Sol. Energy Mater. Sol. Cells, 95, 2400 (2011).
[42] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Vacuum, 66, 505 (2002).
[43] D. G . Thom as, and J. J. L ander , J. Chem . P hys. 25, 1136 (1956).
[44] X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhao, C. C. Wei, J. Sun, Y. Wang, X. D. Zhang and X. H. Geng, Thin Solid Films 515, 3753 (2007).
[45] J. Sun, D. A. Mourey, D. Garg and T. N. Jackson, Electrochem. Solid State Lett. 11, D47 (2008).
[46] B. J. Lokhande, P. S. Patil and M. D. Uplane, Physica B 302–303, 59 (2001).
[47] T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo and M. Kawasaki, Appl. Phys. Lett. 85, 759 (2004).
[48] D. M. Hofmann, D. Pfisterer, J. Sann, B. K. Meyer, R. Tena-Zaera, V. Munoz-Sanjose, T. Frank and G. Pensl, Appl. Phys. A 88, 147 (2007).
[49] M. N. Jung, J. E. Koo, S. J. Oh, B. W. Lee, W. J. Lee, S. H. Ha, Y. R. Cho and J. H. Chang, Appl. Phys. Lett. 94, 041906 (2009).
[50] A. Bowen, J. Li, J. Lewis, K. Sivaramakrishnan, T.L. Alford, S. Iyer, Thin Solid Films, 519, 1809 (2011).
[51] J. Rousset, E. Saucedo and D. Lincot, Chem. Mater. 21, 534 (2009).
[52] Debjani Karmakar, S. K. Mandal, R. M. Kadam, P. L. Paulose, A. K. Rajarajan, T. K. Nath, A. K. Das, I. Dasgupta, and G. P. Das, Phys. Rev. B 75, 144404 (2007).
[53] Bradley K. Roberts, Alexandre B. Pakhomov, Vaithiyalingam S. Shutthanandan, and Kannan M. Krishnan, J. Appl. Phys. 97, 10D310 (2005).
[54] R. Knut, J. M. Wikberg, K. Lashgari, V. A. Coleman, G. Westin, P. Svedlindh, and O. Karis, Phys. Rev. B 82, 094438 (2010).
[55] Pavle V. Radovanovic and Daniel R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003).
[56] Devajyoti Mukherjee, Tara Dhakal, Hariharan Srikanth, Pritish Mukherjee, and Sarath Witanachchi, Phys. Rev. B 81, 205202 (2010).
[57] Xianwu Xiu, Zhiyong Pang, Maoshui Lv, Ying Dai, Lina Ye, Shenghao Han, Appl. Surf. Sci., 253, 3345 (2007).
[58] Nguyen Hoa Hong, Joe Sakai, and Awatef Hassini, J. Appl. Phys. 97, 10D312 (2005).
[59] A. Allenic, W. Guo, Y. Chen, M. B. Katz, G. Zhao, Y. Che, Z. Hu, B. Liu, S. B. Zhang, and X. Pan, Adv. Mater. 19, 3333 (2007).
[60] Chris G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
[61] E.C. Lee, Y.S. Kim, Y.G. Jin and K. J. Chang, Phys. Rev. B 64, 085120 (2001).
[62] A.F. Kohan, G. Ceder, D. Morgan and C.G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
[63] L.G. Wanf and A. Zunger, Phys. Rev. Lett. 90, 256401 (2003).
[64] T.M. Barnes, K. Olson and C.A. Wolden, Appl. Phys. Lett. 86, 112112 (2005).
[65] Qingwei Li, Jiming Bian, Jingchang Sun, Hongwei Liang, Chongwen Zou, Yinglan Sun, Yingmin Luo, Appl. Surf. Sci., 257, 1634 (2010).
[66] S.C. Su, X.D. Yang, C.D. Hu, Physica B: Condensed Matter, 406, 1533 (2011).
[67] Hyung-Kyu Choi, Jang-Ho Park, Sang-Hun Jeong and Byung-Teak Lee, Semicond. Sci. Technol. 24, 105003 (2009).
[68] Ziwen Zhao, Lizhong Hu, Heqiu Zhang, Jingchang Sun, Jiming Bian, Jianze Zhao, Appl. Surf. Sci., 257, 5121 (2011).
[69] S.H. Jeong, B.N. Park, S.-B. Lee, J.-H. Boo, Thin Solid Films 516, 5586 (2008).
[70] Ren-Yu Tian and Yu-Jun Zhao, J. Appl. Phys. 106, 043707 (2009).
[71] F. Zhuge, L.P. Zhu, Z.Z. Ye, J.G. Lu, B.H. Zhao, J.Y. Huang, L. Wang, Z.H. Zhang, Z.G. Ji, Thin Solid Films, 476, 272 (2005).
[72] M. Pacio, H. Juarez, G. Escalante, G. Garcia, T. Diaz, E. Rosendo, Materials Science and Engineering: B, 174, 38 (2010).
[73] M. Kambe, M. Fukawa, N. Taneda, K. Sato, Sol. Energy Mater. Sol. Cells, 90, 3014 (2006).
[74] H.L. Ma, D.H. Zhang, S.Z. Win, S.Y. Li, Y.P. Chen, Sol. Energy Mater. Sol. Cells, 40, 371 (1996).
[75] A. D. Graaf, J. V. Deelen, P. Poodt, T. V. Mol, K. Spee, F. Grob, A. Kuypers, Energy Procedia, 2, 41 (2010).
[76] S. Zhao, P. Wei, S. Chen, Sensors and Actuators B: Chemical, 62, 117 (2000).
[77] B. Sang, Y. Nagoya, K. Kushiya, O. Yamase, Sol. Energy Mater. Sol. Cells, 75, 179 (2003).
[78] A. Limmanee, P. Krudtad, S. Songtrai, C. Piromjit, J. Sritharathikhun, K. Sriprapha, Current Applied Physics, 11, S206 (2011).
[79] S. Y. Myong, K. S. Lim, Sol. Energy Mater. Sol. Cells, 86, 105 (2005).
[80] J. Loffler, R. Groenen, J.L. Linden, M.C.M van de Sanden, R.E.I Schropp, Thin Solid Films, 392, 315 (2001).
[81] Y. J. Kim, H. J. Kim, Materials Letters, 41, 159 (1999).
[82] A. Forleo, L. Francioso, S. Capone, F. Casino, P. Siciliano, O.K. Tan, H. Hui, Sensors and Actuators B: Chemical, 154, 283 (2011).
[83] J.J. Robbins, J. Harvey, J. Leaf, C. Fry, C.A. Wolden, Thin Solid Films 473, 35 (2005).
[84] C. May, R. Menner, J. Strumpfel, M. Oertel, B. Sprecher, Surface and Coatings Technology, 169–170, (2003), 512.
[85] D. Song, P. Widenborg, W. Chin, A. G. Aberle, Sol. Energy Mater. Sol. Cells, 73, 1 (2002).
[86] S. Lee, D. Cheon, W. J. Kim, M. H. Ham, W. Lee, Appl. Surf. Sci., 258, 6537 (2012).
[87] S. Ohno, Y. Kawaguchi, A. Miyamura, Y. Sato, P.K. Song, M. Yoshikawa, P. Frach, Y. Shigesato, Science and Technology of Advanced Materials 7, 56 (2006).
[88] H Kim, J.S Horwitz, S.B Qadri, D.B Chrisey, Thin Solid Films 420–421, 107 (2002).
[89] H Kim, A Pique, J.S Horwitz, H Murata, Z.H Kafafi, C.M Gilmore, D.B Chrisey, Thin Solid Films, 377–378, 798 (2000).
[90] D. Craciun, G.l Socol, N. Stefan, M. Miroiu, V. Craciun, Thin Solid Films 518, 4564, (2010).
[91] J. H. Kim, K. A. Jeon, G. H. Kim, S. Y. Lee, Appl. Surf. Sci., 252, 4834 (2006).
[92] R. G. Aguilar, J. O. Lopez, Lat. Am. J. Phys. Educ. 5, 368 (2011).
[93] T. Jansseune, Compd. Semicond, 11, 34, (2005).
[94] C.A. DiFrancesco (retired), M.W. George, J.F. Carlin, Jr., and A.C. Tolcin, USGS Indium Report, 2011
[95] D.W. Sheel, H.M. Yates, P. Evans, U. Dagkaldiran, A. Gordijn, F. Finger, Z. Remes, M. Vanecek, Thin Solid Films, 517, 3061 (2009).
[96] P. Veluchamy, M. Tsuji, T. Nishio, T. Aramoto, H. Higuchi, S. Kumazawa, S. Shibutani, J. Nakajima, T. Arita, H. Ohyama, A. Hanafusa, T. Hibino, K. Omura, Sol. Energy Mater. Sol. Cells, 67, 179 (2001).
[97] Y. Yan, K. M. Jones, M. M. Al-Jassim, R. Dhere, X. Wu, Thin Solid Films, 519, 7168 (2011).
[98] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, G. Garry, Synthetic Metals, 122, 87 (2001).
[99] P. Lippens. A. Segers, J. Haemers, R. De Gryse, Thin Solid Films, 317, 405 (1998).
[100] A. Tanaka, M. Hirata, Y. Kiyohara, M. Nakano, K. Omae, M. Shiratani, K. Koga, Thin Solid Films, 518, 2934 (2010)
[101] S. Major, S. Kumar, M. Bhatnagar, and K. L. Chopra, Appl. Phys. Lett. 49, 394 (1986).
[102] J. Hu, R.G. Gorden, J. Appl. Phys. 71, 880 (1992).
[103] T. Nakamura, K. Nanbu, T. Ishikawa, and K. Kondo, J. Appl. Phys. 64, 2164 (1988).
[104] T. Yamamoto, T. Mitsunaga, M. Osada, K. Ikeda, S. Kishimoto, K. Awai, H. Makino, T. Yamada, T. Sakemi, S. Shirakata, Superlattices and Microstructures, 38, 369 (2005).
[105] Yu Jin Park, Hyuk Nyun Kim, Hyun Ho Shin, Applied Surface Science 255, 7532 (2009).
[106] Jun-Hyuk Park, Kyung-Jun Ahn, Seok-In Na, Han-Ki Kim, Solar Energy Materials and Solar Cells, 95, 657 ( 2011).
[107] Hsuan-Chung Wu, Yen-Chun Peng, Chieh-Cheng Chen, Optical Materials, 35, 509 (2013).
[108] T. Yamada, T. Nebiki, S. Kishimoto, H. Makino, K. Awai, T. Narusawa, T. Yamamoto, Superlattices and Microstructures, 42, 68 (2007).
[109] F. Wu, L. Fang, Y.J. Pan, K. Zhou, H.B. Ruan, G.B. Liu, C.Y. Kong,Thin Solid Films, 520, 703 ( 2011).
[110] Szu-Ko Wang, Ting-Chun Lin, Sheng-Rui Jian, Jenh-Yih Juang, Jason S.-C. Jang, Jiun-Yi Tseng, Applied Surface Science, 258, 1261 (2011).
[111] Ji-Hong Kim, Ji-Hyung Roh, Kyung-Ju Lee, Sung-Joon Moon, Jae-Won Kim, Kang-Min Do, Byung-Moo Moon, Sang-Mo Koo, Journal of Crystal Growth, 334, 72 (2011).
[112] Koichi Nagamoto, Kunihisa Kato, Satoshi Naganawa, Takeshi Kondo, Yasushi Sato, Hisao Makino, Naoki Yamamoto, Tetsuya Yamamoto, Thin Solid Films, 520, 1411 (2011).
[113] Sang-Moo Park, Tomoaki Ikegami, Kenji Ebihara, Thin Solid Films, 513, 90 (2006).
[114] V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson, R. YakimovaSuperlattices and Microstructures, 39, 275 ( 2006).
[115] T. Terasako, H. Song, H. Makino, S. Shirakata, T. Yamamoto, Thin Solid Films, 528, 19 (2013).
[116] http://en.wikipedia.org/wiki/Hexane_(data_page)
[117] D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. New Jersey: John Wiley & Sons, Inc., 2006.
[118] L. J. van der Pauw, "A method of measuring specific resistivity and hall effect of discs of arbitrary size," Philips Research Reports, 13, 1 (1958).
[119] S. W. Shin, K. U. Sim, J. H. Moon, J. H. Kim, Curr. Appl. Phys. 10, S274 (2010).
[120] E. Nam, Y. H. Kang, D. Jung, Y. S. Kim, Thin Solid Films 518, 6245 (2010).
[121] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, Y. S. Yu, J. Cryst. Growth 259, 130 (2003).
[122] S. M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513, 90 (2006).
[123] J. L. Zhao, X.W. Sun, H. Ryu, Y. B. Moon, Opt. Mater. 33, 768 (2011).
[124] J. J. Robbins, J. Harvey, J. Leaf, C. Fry, C. A. Wolden, Thin Solid Films 473, 35 (2005).
[125] J. D. Pedersen, H. J. Esposito and K. S. Teh, Nanoscale Res Lett. 6, 568 (2011).
[126] Y. C. Huang, Z. Y. Li, H. H. Chen, W. Y. Uen, S. M. Lan, S. M. Liao, Y. H. Huang, C. T. Ku, M. C. Chen, T. N. Yang, C. C. Chiang, Thin Solid Films 517, 5537 (2009).
[127] K. Ellmer, A. Klein, B. Rech, Transparent conductive zinc oxide: Basics and applications in thin film solar cells (Springer, New York, 2008), p. 378.
[128] J. L. Zhao, X.W. Sun, H. Ryu, Y. B. Moon, Opt. Mater. 33, 768 (2011).
[129] J. J. Robbins, J. Harvey, J. Leaf, C. Fry, C. A. Wolden, Thin Solid Films 473, 35 (2005).
[130] Q. B. Ma, Z. Z. Ye, H. P. He, J. R. Wang, L. P. Zhu, B. H. Zhao, Vacuum 82, 9 (2007).
[131] Y. Li, G. S. Tompa, S. Liang, C. Gorla, Y. Lu, J. Doyle, J. Vac. Sci. Technol., A 15, 1063 (1997).
[132] J. H. Park, K. J. Ahn, S.I. Na, H. K Kim, Sol. Energy Mater. Sol. Cells 95, 657 (2011).
[133] E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Goncalves, I. Ferreira, E. Elangovan, R. Martins, Sol. Energy Mater. Sol. Cells 92, 1605 (2008).
[134] S. Liang, X. Bi, J. Appl. Phys. 104, 113533 (2008).
[135] S.T. Tan, X.W. Suna, Z.G. Yu, P. Wu, G.Q. Lo, D.L. Kwong, Appl. Phys. Lett. 91, 072101 (2007).
[136] W. Xia, Y. Wang, R. Bergstraser, S. Kundu, M. Muhler, Appl. Surf. Sci. 254, 247 (2007).
[137] S. K. Wang, T. C. Lin, S. R. Jian, J. Y. Juang, J. S. C. Jang, J. Y. Tseng, Appl. Surf. Sci. 258, 1261 (2011).
[138] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science, 285, 692 (1999).
[139] H. Sai, H. Jia, M. Kondo, J. Appl. Phys., 108, 044505 (2010).
[140] J. Hupkes, M. Schulte, G. Schope, H. Stiebig, B. Rech, M. Wuttig, J. Appl. Phys., 101, 074903 (2007).
[141] O. Isabella, J. Krcˇ, and M. Zeman, Appl. Phys. Lett. 97, 101106 (2010).
[142] V. E. Ferry, M. A. Verschuuren, M. C. V. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, Nano Lett. 11, 4239 (2011).
[143] G. Yue, L. Sivec, J. M. Owens, B. J. Yan, J. Yang, and S. Guha, Appl. Phys. Lett. 95, 263501 (2009).
[144] S. Calnan, J. Hupkes, B. Rech, H. Siekmann, A.N. Tiwari, Thin Solid Films 516, 1242 (2008).
[145] H. Zhu, J. Hupkes, E. Bunte, J. Owen, S.M. Huang, Sol. Energy Mater. Sol. Cells 95, 964 (2011).
[146] H.L. Ma, D.H. Zhang, S.Z. Win, S.Y. Li, Y.P. Chen, Sol. Energy Mater. Sol. Cells 40, 371 (1996).
[147] N. Amin, T. Isaka, A. Yamada, M. Konagai, Sol. Energy Mater. Sol. Cells 67, 195 (2001).
[148] S. Fay, S. Dubail, U. Kroll, J. Meier, Y. Ziegler, A. Shah, Proc. 16th EU PVSEC, Glasgow (2000), p. 361.
[149] T. Oyama, M. Kambe, N. Taneda, and K. Masumo, Mater. Res. Soc. Symp. Proc. 1101, 1101-KK02-01 (2008).
[150] M. Kambe, K. Masumo, N. Taneda, T. Oyama, K. Sato Tech, Dig. of the Intern PVSEC-17, Fukuoka, Japan (2007), p. 1161.
[151] K. Nishioka, N. Mizutani, and H. Komiyama, J. Electrochem. Soc. 147, 1440 (2000).
[152] Y. Kajikawa, S. Noda, and H. Komiyama, Chem. Vap. Deposition 8, 99 (2002).
[153] N. Fujimura et al. -J. Cryst. Growth 130, 269 (1993).

QR CODE