簡易檢索 / 詳目顯示

研究生: Getabalew Shifera
Getabalew Shifera
論文名稱: Zinc Oxide Nanowires /Metallic Glass Nanotube Hybrid and Oxides Nanotube Arrays: Fabrication and Material Characterizations
Zinc Oxide Nanowires /Metallic Glass Nanotube Hybrid and Oxides Nanotube Arrays: Fabrication and Material Characterizations
指導教授: 朱瑾
Jinn Chu
口試委員: 黃柏仁
Bohr-Ran Huang
洪瑞華
Ray Hua Hong
陳學仕
Xue Shi Chen
劉全璞
Chuan Pu Liu
令絮東洋子
T.Imae
姚栢文
Yiu Pak Man
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 80
中文關鍵詞: 奈米複合材氧化鋅奈米線金屬玻璃奈米管陣列氧化金屬奈米管陣列
外文關鍵詞: nanohybrids, ZnO nanowires, metallic glass nanotube array, oxide nanotube array
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此篇博士論文首次介紹一種氧化鋅奈米線(ZnO-NWs)及金屬奈米管陣列(MeNTA)的複合結構,其中大量的氧化鋅奈米線呈現高度密集橫向及垂直的整齊排列。異質表面的金屬奈米管陣列是由濺鍍沉積不同金屬玻璃(Zr55Cu30Al10Ni5,Cu47Zr42Al7Ti4, Pd72Cu12Si16, W50Ni25B25,及Ni54B0.3Si36Cr2.7Fe7)於高度650nm、直徑2、10、20µm孔洞陣列之光阻劑上。接著於金屬奈米管陣列上濺鍍一層氧化鋅晶種層,提供奈米線於金屬奈米管陣列內成核的位置。分別使用掃描式電子顯微鏡、X光繞射儀、拉曼光譜儀、X光光電子能譜儀及光激發螢光譜儀分析此結構的表面型態、晶體結構、鍵結結構、表面組成分析以及光學性質。本篇結果顯示,奈米線呈現六角纖鋅礦結構,且有強烈UV光激發性。因此,可以應用在光電產業、感測器、奈米壓電發電機、太陽能電池及其他電池應用。
    多數奈米材料,例如氧化奈米管、金屬或奈米碳管,由電沉積、蝕刻及光學顯影技術製成,受限於大小及覆蓋面積且不易控制其直徑、高度及管內空間,且難以形成整齊、週期性排列的結構。此篇研究的第二部分介紹一種得以控制直徑、高度及管內空間的氧化奈米管的製造方式。利用濺鍍技術於矽基材上沉積出整齊排列,管高650nm、直徑1.5 µm的ZnO, CuO, ZnO/CuO, Ti/ZnO奈米管陣列。其所有材料的表面形貌及ZnO、CuO的晶體結構,分別是使用場發掃描式電子顯微鏡(SEM)及X光繞射儀(XRD)進行觀察。


    This Ph.D. thesis presents the first-ever nanohybrid ZnO nanowires (ZnO-NWs)/Metallic Nanotube Arrays (MeNTA) structure for the large-scale fabrication of highly dense laterally and vertically aligned ZnO-NWs. The preparation of the heterogeneous surface MeNTA was done by sputter-deposition of different metallic glasses (Zr55Cu30Al10Ni5, Cu47Zr42Al7Ti4, Pd72Cu12Si16, W50Ni25B25, and Ni54B0.3Si36Cr2.7Fe7) over contact-hole arrays created by a photoresist template with a height of 650 nm and various diameters (2, 10, and 20 µm). A ZnO seed layer is deposited by sputtering on MeNTAs to provide the nucleation sites to grow the nanowires inside the MeNTAs. The material analysis like surface morphology, crystal structure, bonding structure, surface functional composition of samples, optical properties was done using scanning electron microscopy, X-ray diffraction, Raman, XPS, and photoluminescence, respectively. Our results confirm that the nanowires show a hexagonal wurtzite structure and present strong UV emissions and thus, can be used in optoelectronics, sensors, piezoelectric-nanogenerator, solar cells, and battery applications.
    `Most nanotube materials, such as oxide nanotube, metal, and carbon nanotube, are typically produced by electrodeposition, etching, and lithography methods on a limited scale and coverage area. it is not easy to monitor the diameter, height, and inter-tube spacing of these nanotubes, they were also grown with a lack of periodicity and order. In the second part of this study, a technique has been developed to fabricate ordered arrays of oxide nanotubes with control of the diameter, height, and intertube space. The Ordered ZnO, CuO, ZnO/CuO, Ti/ZnO nanotube arrays with a height of 650 nm and a diameter of 1.5 µm were fabricated on silicon substrates by sputter deposition techniques. The morphology and elemental composition of all the materials were characterized by scanning electron microscopy (SEM) and the crystal structure of ZnO and CuO were characterized by X-ray diffraction (XRD).

    Abstract v Acknowledgments vi List of Figure x List of Tables xiii Chapter 1 1 Introduction 1 1.1 Background of study 1 1.2 Motivation and Goals 5 1.2 Thesis Organization 6 Chapter 2 7 Literature Review and Experimental instruments 7 2.1 Semiconductor ZnO basic properties 7 2.1.1 Vapor phase synthesis technique 9 2.1.2 Solution Phase Synthesis. 10 2.1.3 Growth of ZnO nanowires on a patterned surface 12 2.2 Metallic Glasses 14 2.2.1 Mechanical Properties of Metallic Glasses 16 2.3 Thin Film Metallic Glasses: Basic Properties and Application 17 2.3.1 ZnO hybrid with thin-film metallic glass 20 2.4 Nanotube Technology20 2.4.1 Metallic nanotubes 21 2.4.2 Metallic glass nanotube array (MeNTA) 21 2.4.3 Oxide nanotube 24 2.5 RF sputtering system 25 Chapter 3. Experimental Methods 27 3.1 ZnO-NWs/Metallic Glass Nanotube Hybrid Arrays Fabrication 27 3.1.1 Preparation of Substrate and Photoresist 27 3.1.2 Deposition of TFMG over contacted -hole arrays photoresist template 28 3.1.3 Growth of ZnO Nanowire with MeNTA 28 3.1.4. Annealing of ZnO Nanowire within Zr-MeNTA Φ:20 μm diameter 29 3.2 Characterization 29 3.3 Oxides nanotube fabrication 29 3.2.1 Preparation of Substrate and Photoresist 30 3.2.2 Deposition of oxide films 30 3.3 ZnO/CuO and Ti/ZnO nanotube fabrication 31 3.3.1 Deposition of oxide/oxide and metal/oxide films 31 3.4 Characterization 32 Chapter 4 33 ZnO-NWs/Metallic Glass Nanotube Hybrid Arrays: Fabrication and Material Characterization 33 4.1 structural characterization 33 4.2 Crystallinity Behavior 38 4.3 Raman spectra (phonon vibrational modes or bonding structure characterization) 42 4.4. XPS analysis of sample 43 Chapter 5 49 Fabrication of nano/microstructure of oxide nanotube array 49 5.1 Structural Characterization single layer Oxide nanotube arrays 49 5.2 Structural Characterization Oxide/Oxide and metal/oxide nanotube arrays 51 Chapter 6 55 Conclusions and Future Work 55 6.1 Conclusion 55 6.2 Future Work 56 Chapter 7 57 References 57

    [1] J. Liu, S. Xie, Y. Chen, X. Wang, H. Cheng, F. Liu, J. Yang, Homoepitaxial regrowth habits of ZnO nanowire arrays, Nanoscale Research Letters, 6 (2011) 619.
    [2] Y. Ren, Z. Yuan, J. Fan, W. Huang, C. Shuai, Annealing temperature-dependent morphology, structure, and optical properties of well-aligned ZnO nanowire arrays, Applied Physics A, 124 (2018) 655.
    [3] S.Rackauskas, N.Barbero, C. Barolo, G.J.Viscardi, ZnO nanowire application in chemo resistive sensing. nanomaterials, 7 (2017) 381.
    [4] Y. Zhang, T. R Nayak, H. Hong, W. Cai, Biomedical applications of zinc oxide nanomaterials, Current molecular medicine, 13 (2013) 1633-1645.
    [5] A. Singh, S. Singh, ZnO nanowire-coated hydrophobic surfaces for various biomedical applications, Bulletin of Materials Science, 41 (2018) 94.
    [6] C.-M. Chou, L.T. Thanh Thi, N.T. Quynh Nhu, S.-Y. Liao, Y.-Z. Fu, L.V.T. Hung, V.K.J.A.S. Hsiao, Zinc Oxide Nanorod Surface-Enhanced Raman Scattering Substrates without and with Gold Nanoparticles Fabricated through Pulsed-Laser-Induced Photolysis, Applied Science, 10 (2020) 5015.
    [7] M. Gao, G. Xing, J. Yang, L. Yang, Y. Zhang, H. Liu, H. Fan, Y. Sui, B. Feng, Y.J. Sun, Zinc oxide nanotubes decorated with silver nanoparticles as an ultrasensitive substrate for surface-enhanced Raman scattering, Microchim Acta, 179 (2012) 315-321.
    [8] W. Yan, A. Page, T. Nguyen-Dang, Y. Qu, F. Sordo, L. Wei, and F. Sorin, Advanced multi-material electronic and optoelectronic fibers and textiles, Advanced Materials, 31 (2019) 1802348.
    [9] Z. Wang, R. Yu, C. Pan, Y. Liu, Y. Ding, and Z. L. Wang, Piezo-phototronic UV/visible photo-sensing with optical–fiber–nanowire hybridized structures, Advanced Materials, 27 (2015) 1553–60.
    [10] C. Pan, J. Zhai, and Z. L. Wang, Piezotronics and piezo-photonics of third-generation semiconductor nanowires, Chemical Reviews, 119 (2019) 9303−9359.
    [11] B. Zhang, J. He, J. Li, L. Wang and D. Li, Microscale electrohydrodynamic printing of in situ reactive features for patterned ZnO nanorods, Nanotechnology, 30 (2019) 475301.
    [12] Y. Sun, G.M. Fuge, M.N. Ashfold, Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods, Chemical Physics Letters, 396 (1-3) (2004) 21-26.
    [13] H. Yuan, Y.Zhang, Preparation of well-aligned ZnO whiskers on a glass substrate by atmospheric MOCVD, Journal of crystal growth, 263 (1-4) (2004) 119-124.
    [14] E. Muchuweni, T. Sathiaraj, H. Nyakotyo, Effect of annealing on the microstructural, optical, and electrical properties of ZnO nanowires by hydrothermal synthesis for transparent electrode fabrication, Materials Science & Engineering B, 227 (2018) 68-73.
    [15] H. Zong, C. Geng, C. Kang, G. Cao, L. Li, B. Zhang, Excellent near-infrared transmission of Zr-based thin film metallic glasses, Results Physics, 10 (2018) 612-615.
    [16] Y.-C. Lu, W.-H. Chiang, C.-Y. Liu, J.P. Chu, H.-C.Ho, C.-H. Hsueh, Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity, Sensors and Actuators: B. Chemical, (2021) 129132.
    [17] P. Yiu, W. Diyatmika, N. Bönninghoff, Y.-C. Lu, B.-Z. Lai, J.P. Chu, Thin film metallic glasses: Properties, applications, and future. Journal of applied physics, 127 (2020) 030901.
    [18] S.T. Kassa, C. C. Hu, Y.C. Liao, J.K. Chen, J.P.Chu, Thin-film metallic glass as an effective coating for enhancing oil/water separation of electrospun polyacrylonitrile membrane, Surface Coat, and Technology, 368 (2019) 33-41.
    [19] E.T. Gizaw, H.-H.Yeh, J.P. Chu, C.-C. Hu, Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation, Separation, and PurificationTechnololgy, 237 (2020) 116340.
    [20] H. Yamazaki, Y. Hayashi, K. Masunishi, D. Ono, T. TakaIkehashi, A review of capacitive MEMS hydrogen sensor using Pd‐based metallic glass with fast response and low power consumption, Electron Communication in Jpan, 102 (2019) 70-77.
    [21] B.-R.Huang, J.P. Chu, C.-L. Hsu, Y.-S. Chen, C.-H. Chang, Few-layer thin-film metallic glass-enhanced optical properties of ZnO nanostructures, ACS Applied Materials and Interfaces, 9 (2017) 39475-39483.
    [22] B.R. Huang, J.P. Chu, A. Saravanan, M.M. Yenesew, N. Bönninghoff, C-H. Chang, High‐Performance Sensor Based on Thin‐Film Metallic Glass/Ultra‐nanocrystalline Diamond/ZnO Nanorod Heterostructures for Detection of Hydrogen Gas at Room Temperature, Chemistry Europe, 25 (2019) 10385-10393.
    [23] J.-K. Chen, W.-T. Chen, C.-C. Cheng, C.-C. Yu, J.P. Chu, Metallic glass nanotube arrays: Preparation and surface characterizations, Materials Today, 21 (2018) 178-185.
    [24] W.-T. Chen, S.-S. Li, J.P. Chu, K.C. Feng, J.-K. Chen, Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance, Biosensors, and Bioelectronics, 102 (2018) 129-135.
    [25] W.-T. Chen, K. Manivannan, C.-C. Yu, J.P. Chu, J.-K. Chen, Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass, Nanoscale, 10 (2018) 1366-1375.
    [26] Y.-C. Lai, H.-C. Ho, B.-W. Shih, F.-Y. Tsai, C.-H. Hsueh, High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate, Applied srface science, 439 (2018) 852-858.
    [27] B. Pecquenard, F. Le Cras, D. Point, O. Sicardy, J.-P. Manaud, Thorough characterization of sputtered CuO thin films used as conversion material electrodes for lithium batteries, Applied Materials, and Interfaces, 6 (2014) 3413-3420.
    [28] G. Mittal, M. Khaneja, K. Saini, I. Lahiri, Carbon nanotube-based 3-dimensional hierarchical field emitter structure, Royal society of chemistry, 5 (2015) 21487-21494.
    [29] V. Patake, S. Joshi, C. Lokhande, O.-S Joo, Electrodeposited porous and amorphous copper oxide film for application in a supercapacitor, materials chemistry and physics, 114 (2009) 6-9.
    [30] J. Liu, J. Jin, Z. Deng, S.-Z. Huang, Z.-Y. Hu, L. Wang, C. Wang, L.-H. Chen, Y. Li, G.Van Tendeloo, Tailoring CuO nanostructures for an enhanced photocatalytic property, Journal of colloid and interface science, 384 (2012) 1-9.
    [31] H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, J. Cuya, Fabrication and characterization of CuO-based solar cells, Journal of Materials Science Research, 1 (2012) 138.
    [32] N.D. Hoa, N. Van Quy, H. Jung, D. Kim, H. Kim, S.-K. Hong, Synthesis of porous CuO nanowires and their application to hydrogen detection, Sensors and Actuators B: Chemical, 146 (2010) 266-272.
    [33] L. Xu, Q. Yang, X. Liu, J. Liu, X. Sun, One-dimensional copper oxide nanotube arrays: biosensors for glucose detection, Royal Society of Chemistry, 4 (2014) 1449-1455.
    [34] K. Saini, R.M. Kumar, D. Lahiri, I. Lahiri, Quantifying bonding strength of CuO nanotubes with the substrate using the nano-scratch technique, Nanotechnology, 26 (2015) 305701.
    [35] C. Jagadish, S.Pearton, Zinc oxide bulk, thin films, and nanostructures: processing, properties, and applications, Elsevier, 2011.
    [36] A. Fulati, S. Usman Ali, M. Riaz, G. Amin, O. Nur, M.Willander, Miniaturized pH sensors based on zinc oxide nanotubes/nanorods, Sensor, 9 (2009) 8911-8923.
    [37] A. Galdámez-Martinez, G. Santana, F. Güell, P.R. Martínez-Alanis, A.J.N. Dutt, Photoluminescence of ZnO Nanowires, nanomaterials,10 (2020) 857.
    [38] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis, Thin Solid Film, 605 (2016) 2-19.
    [39] R. Kumar, O. Al-Dossary, G. Kumar, A.Umar, Zinc oxide nanostructures for NO2 gas–sensor applications, Nano-Micro Letters, 7 (2015) 97-120.
    [40] N.M.J. Ditshego, ZnO Nanowire Field-Effect Transistor for Biosensing, Journal of Nano Research, 60 (2019) 94-112.
    [41]Y. Zhang, M. Ram, E. Stefanakos, D. Goswami, Synthesis, Characterization, and Applications of ZnO Nanowires, Journal of Nanomaterials, 2012 (2012).
    [42] S. Baruah, M. Mahmood, M. Myint, T. Bora, J. Dutta, Enhanced visible-light photocatalysis through fast crystallization of zinc oxide nanorods, Beilstein journal of nanotechnology, 1 (2010) 14-20.
    [43] A. Sugunan, H. Warad, M. Boman, J. Dutta, Zinc oxide nanowires in the chemical bath on seeded substrates: Role of hexamine. Journal of Sol-Gel Science and Technology, 39 (2006) 49-56.
    [44] A. Hatamie, A. Khan, M. Golabi, A.Turner, V. Beni, W.C. Mak, A. Sadollahkhani, H. Alnoor, B. Zargar, S. Bano, O. Nur, M. Willander, Zinc Oxide Nanostructure-Modified Textile and Its Application to Biosensing, Photocatalysis, and as Antibacterial Material, Langmuir, 31 (2015) 10913-10921.
    [45] S. Xu, Z.L. Wang, Nano Research, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Research, 4 (2011) 1013-1098.
    [46] S.A. Morin, F.F. Amos, S. Jin, Biomimetic Assembly of Zinc Oxide Nanorods onto Flexible Polymers. Journal of the American Chemical Society, 129 (2007) 13776-13777.
    [47] C. Xu, P. Shin, L. Cao, D. Gao, Preferential Growth of Long ZnO Nanowire Array and Its Application in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 114 (2010) 125-129.
    [48] S. Kwon, J.-H. Park, J.-G. Park, Patterned growth of ZnO nanorods by micro-molding of the sol-gel-derived seed layer, Applied Physics Letters, 87 (2005) 133112-133112.
    [49] J.P. Chu, T.-Y. Liu, C.-L. Li, C.-H. Wang, J.S. Jang, M.-J. Chen, S.-H. Chang, W.-C. Huang, Fabrication, and characterizations of thin-film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films, 561 (2014) 102-107.
    [50] M. Telford, The case for bulk metallic glass, Materials Today, 7 (2004) 36-43.
    [51] Y. An, G. Hou, X. Zhao, G. Liu, H. Zhou, J. Chen, Microstructure and tribological properties of iron-based metallic glass coatings prepared by atmospheric plasma spraying, Vacuum, 107 (2014) 132–140.
    [52] J. Eckert, J. Das, S. Pauly, C. Duhamel, Mechanical properties of bulk metallic glasses and composites, Journal of Materials Research, 22 (2007) 285-301.
    [53] A. Inoue, Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Materialia, 48 (2000) 279-306.
    [54] A. Inoue, A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys, Acta Materialia, 59 (2011) 2243-2267.
    [55] M.K. Tam, S.J. Pang, C.H. Shek, Corrosion behavior, and glass-forming ability of Cu–Zr–Al–Nb alloys Journal of Non-crystalline Solids, 353 (2007) 3596-3599.
    [56] W.L. Johnson, Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin 24 (1999) 42-56.
    [57] A.L. Greer, Metallic glasses… on the threshold, Materials today 12 (2009) 14-22.
    [58] H. Guo, P. Yan, Y. Wang, J. Tan, Z. Zhang, M. Sui, E.Ma, Tensile ductility and necking of metallic glass. nature materials, 6 (2007) 735-739.
    [59] Z. Shan, J. Li, Y. Cheng, A. Minor, S.S. Asif, O. Warren, E.Ma, Plastic flow and failure resistance of metallic glass: Insight from in situ compressions of nanopillars. Physics Review B, 77 (2008) 155419.
    [60]T. Hufnagel, R. Ott, J. Almer, Structural aspects of elastic deformation of a metallic glass. Physics Review B, 73 (2006) 064204.
    [62] H. Ott, S. Heise, R. Sutarto, Z. Hu, C. Chang, H. Hsieh, H.-J. Lin, C. Chen, L. Tjeng, Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films, Physical Review B, 73 (2006) 094407.
    [62] W. Johnson, K. Samwer, A universal criterion for plastic yielding of metallic glasses with a (T/T g) 2/3 temperature dependence. Physical Review Letters, 95 (2005) 195501.
    [63] W. Diyatmika, L. Xue, T.-N. Lin, C.-W. Chang, J.P. Chu, Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study. Japanese Journal of Applied Physics, 55 (2016).
    [64] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films, 520 (2012) 5097-5122.
    [65] N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka, M. Esashi, Metallic glass thin films for potential biomedical applications, Society for biomaterial, 2014.
    [66] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films, 561 (2014) 2-27.
    [67] M. Ashby, A.L. Greer, Metallic glasses as structural materials, Scripta Materialia, 54 (2006) 321-326.
    [68] C.-C. Yu, J.P. Chu, C.-M. Lee, W. Diyatmika, M.H. Chang, J.-Y. Jeng, Y. Yokoyama,
    Bending property enhancements of Zr55Cu30Al10Ni5 bulk metallic glass: Effects of various surface modifications, Materials Science and Engineering A, 633 (2015) 69-75.
    [69] C.-C. Yu, C.M. Lee, J.P. Chu, J.E. Greene, P.K. Liaw, Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials, 4 (2016).
    [70] S.Y. Kuan, J.C. Huang, Improving the ductility of thin-film metallic glasses via nano-twinning, Thin Solid Films, 561 (2014) 43-47.
    [71] B.A. Sun, W.H. Wang, The fracture of bulk metallic glasses. Progress in Materials Science, 74 (2015) 211-307.
    [72] B. Gludovatz, S.E. Naleway, R.O. Ritchie, J.J. Kruzic, Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia, 70 (2014) 198-207.
    [73] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, 55 (2007) 4067-4109.
    [74] C.-M. Lee, R.J. Jeng, C.-C. Yu, C.-H. Chang, C.-L. Li, J.P. Chu, Mechanical property evaluations of an amorphous metallic/ceramic multilayer and its role in improving fatigue properties of 316L stainless steel, Materials Science and Engineering A, 671 (2016) 198-202.
    [75] C. Wang, Y.-C. Liao, J.P. Chu, C.-H. Hsueh, Viscous flow and viscosity measurement of low-temperature imprintable AuCuSi thin film metallic glasses investigated by nanoindentation creep, Materials, and Design, 123 (2017) 112-119.
    [76] C.-C. Yu, J.P. Chu, H. Jia, Y.-L. Shen, Y. Gao, P.K. Liaw, Y. Yokoyama, Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling, Materials Science and Engineering A, 692 (2017) 146-155.
    [77] C.-L. Li, J.P. Chu, J.-W. Lee, Measuring notch toughness of thin-film metallic glasses using focused ion beam-based microcantilever method: Comparison with Ti and TiN crystalline films, Materials Science and Engineering A, 698 (2017) 104-109.
    [78] N. Eliaz, D. Fuks, D. Eliezer, A new model for the diffusion behavior of hydrogen in metallic glasses, Acta Materialia, 47 (1999) 2981-2989.
    [79] A.Y. Alentiev, K.A. Loza, Y.P. Yampolskii, Development of the methods for prediction of gas permeation parameters of glassy polymers: polyimides as alternating copolymers, Journal of Membrane Science, 167 (2000) 91-106.
    [80] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J. Chu, S.C. Jang, Y. Gao, P. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films, 561 (2014) 2–27.
    [81] R.H. Baughman, A.A. Zakhidov, W.A.J.s. De Heer, Carbon nanotubes--the route toward applications, the Botanical Review, 297 (2002) 787-792.
    [82] S. Kumar, R. Rani, N. Dilbaghi, K. Tankeshwar, K.-H Kim, Carbon nanotubes: a novel material for multifaceted applications in human healthcare, Royal Society of Chemistry, 46 (2017) 158-196.
    [83] C. Huang, Y.J.N. Hao, The fabrication of short metallic nanotubes by templated electrodeposition, Nanotechnology, 20 (2009) 445607.
    [84] G. Cao, D. Liu, Template-based synthesis of the nanorod, nanowire, and nanotube arrays, Advances in Colloid and Interface Science, 136 (2008) 45–64.
    [85] C.N.R. Rao, A. Müller, A.K. Cheetham, The chemistry of nanomaterials: synthesis, properties, and applications, John Wiley & Sons, 2006.
    [86] D. Khudhair, A. Bhatti, Y. Li, H.A. Hamedani, H. Garmestani, P. Hodgson, S.J Nahavandi, E. C, Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations, Materials Science and Engineering: C 59 (2016) 1125-1142.
    [87] Z. Lei, X. Liu, R. Li, H. Wang, Y. Wu, Z. Lu, Ultrastable metal oxide nanotube arrays achieved by entropy-stabilization engineering, Scripta Material, 146 (2018) 340-343.
    [88] C. Soldano, Hybrid metal-based carbon nanotubes: A novel platform for multifunctional applications, Progress in materials science, 69 (2015) 183-212.
    [89] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, 56 (2000) 159-172.
    [90] X. She, Y. Shen, J. Wang, C. Jin, Light: Pd films on soft substrates: a visual, high-contrast and low-cost optical hydrogen sensor. Light: Science & Applications, 8 (2019) 4.
    [91] E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Low- temperature synthesis of ZnO nanowires on GAZO thin films annealed at different temperatures for a solar cell application, Materials Science in Semiconductor Processing, 68 (2017) 80-86.
    [92] J. Wang, Y. Xia, Y. Dong, R. Chen, L. Xiang, S. Komarneni, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst, Applied Catalysis B: Environmental, 192 (2016) 8-16.
    [93] C.-W. Fang, J.-M. Wu, L.-T. Lee, Y.-H. Hsien, S.-C. Lo, C.-H. Chen, ZnO: Al nanostructures synthesized on pre-deposited aluminum (Al)/Si template: Formation, photoluminescence and electron field emission, Thin Solid Films, 517 (2008) 1268-1273.
    [94] K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol-gel on-chip’ process, Nature Materials, 10 (2011) 45-50.
    [95] X.-J. Yang, X.-Y. Miao, X.-L. Xu, C.-M. Xu, J. Xu, H.-T. Liu, Structure, X-ray photoelectron spectroscopy, and photoluminescence properties of highly ordered ZnO micro rods. Optical Materials, 27 (2005) 1602-1605.
    [96] K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: An investigation combining confocal microscopy and first-principles calculations, Journal of Applied Physics, 114 (2013) 034901.
    [97] N.H. Alvi, K. ul Hasan, O. Nur, M. Willander, The origin of the red emission in n-ZnO nanotubes/p-GaN white light-emitting diodes, Nanoscale Research Letters, 6 (2011) 130.
    [98] D. Chhikara, K. Srivatsa, M.S. Kumar, P. Singh, S. Das, O.J.A.M. Panwar, Growth and field emission properties of vertically-aligned ZnO nanowire array on biaxially textured Ni-W substrate by thermal evaporation, Advanced Materials Letters, (2015) 862-866.
    [99] E. Robak, E. Coy, M. Kotkowiak, S. Jurga, K. Załęski, H.J.N. Drozdowski, The effect of Cu doping on the mechanical and optical properties of zinc oxide nanowires synthesized by hydrothermal route, Nanotechnology B, 27 (2016) 175706.
    [100] A. Bera, D. Basak, Pd-nanoparticle-decorated ZnO nanowires: ultraviolet photosensitivity and photoluminescence properties, Nanotechnology, 22 (2011) 265501.
    [101] T.-J. Kuo, C.-N. Lin, C.-L. Kuo, M.H. Huang, Growth of Ultralong ZnO Nanowires on Silicon Substrates by Vapor Transport and Their Use as Recyclable Photocatalysts, Chemistry of Materials, 19 (2007) 5143-5147.

    無法下載圖示 全文公開日期 2026/01/29 (校內網路)
    全文公開日期 2026/01/29 (校外網路)
    全文公開日期 2026/01/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE