簡易檢索 / 詳目顯示

研究生: 許景嘉
Jing-Jia Xu
論文名稱: 六自由度機械手臂之系統設計與應用開發
System Design and Application Development of Six Axis Manipulator
指導教授: 林紀穎
Chi-Ying Lin
黃緒哲
Shiuh-Jer Huang
口試委員: 黃緒哲
Shiuh-Jer Huang
黃安橋
An-Chyau Huang
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 六軸機械手臂控制平衡機構設計背隙補償模糊滑動控制函數近似法之適應性控制力回饋控制
外文關鍵詞: Six-axis manipulator control, counterbalance mechanism design, backlash calibration, FSMC, FATAC, force control
相關次數: 點閱:207下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計一關節式六軸機械手臂,在機械結構上使用兩種平衡系統以減輕馬達負載,以基於Arm晶片架構的Arduino開發板做為機械手臂之控制核心,機械手臂利用Denavit-Hartenberg(D-H)建立機械手臂之理想運動學模型並利用順逆運動學來推導各軸角度與機械手臂終端器空間位置的關係,以透過背隙校正來補償實際運動學模型與理想運動學模型之差異,提高機械手臂定位精度。本研究中導入模糊滑動控制、以函數近似法為基礎之兩種適應性控制器做為各軸馬達定位,以機械手臂之運動控制探討各控制器之特性;並在最後結合以質量彈簧阻尼系統做為力量控制的控制律,實現人機互動與兩台機械手臂合作搬運物體之阻抗控制。
    關鍵字:六軸機械手臂控制、平衡機構設計、背隙補償、FSMC、FAT適應性控制、力回饋控制


    In this thesis, a six-axis manipulator was designed. Two kinds of counterbalance mechanism are used to reduce the loading of motors.The overall control system was constructed on three Arduino develpoment board which is based on a 32-bit ARM core microcontroller. The Denavit-Hartenberg matrix was employed to build the ideal kinematics model of this manipulator. The forward and inverse kinematics is used to derive the relationship between the angle of each axis and the spatial position of the end-effector of the manipulator. Backlash calibration is adopted to improve the positioning accuracy of the manipulator. In addition, fuzzy-sliding mode controller and two kinds of adaptive controllers based on function approximation technique are employed to monitor the motion trajectory of this manipulator. The experimental result are used to evaluate and compare the performance of these controller. Finally, the mass-spring-damping system is introduced as the control law for interaction force control to accomplish the operation of human-machine interaction and cooperating handle object by two manipulators.
    Keywords: Six-axis manipulator control, counterbalance mechanism design, backlash calibration, FSMC, FAT adaptive control, force control

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1研究動機與背景 1 1.2文獻回顧 2 1.4論文架構 5 第二章 系統架構 6 2.1 系統簡介 6 2.2 機械系統 12 2.2.1 動力來源 12 2.2.2 第二軸彈簧連桿平衡設計 12 2.2.3 第三軸配重平衡設計 17 2.2.4 四五軸配重平衡設計 18 2.3 控制系統 20 2.3.1 Arduino 20 2.3.2 IO處理板 21 2.3.3 馬達驅動器 23 2.3.4 ATI load cell 23 2.3.5 差動訊號轉換板 24 2.4 L型量測儀 26 第三章 運動學分析 29 3.1 機械手臂運動學模型 30 3.2機械手臂反向運動學 33 3.3 機械校正 42 3.3.1 第一軸背隙校正 42 3.3.2 第二軸背隙校正 45 3.3.3 第三軸背隙校正 47 3.4主從端坐標轉換 48 3.5速度曲線規劃 49 3.5.1 各軸馬達加速度及速度參數估測方式 50 3.5.2 梯形速度規劃 52 3.6連續軌跡規劃 54 第四章 控制理論 57 4.1模糊滑動控制 58 4.1.1 模糊滑動控制理論 58 4.1.2模糊滑動控制原理 58 4.2 FATAC 61 4.2.1 函數近似法(Functional Approximation Technique) 61 4.2.2 FATAC控制器設計 64 4.3 ASFAT 66 4.4 力回饋控制 67 4.4.1 阻抗控制原理 67 第五章 實驗結果 69 5.1單軸控制實驗 69 5.1.1 FSMC 70 5.1.2 FATAC 73 5.1.3 ASFAT 76 5.2 FSMC點到點多軸同動實驗 79 5.3 背隙補償實驗 81 5.3.1 二三軸補償實驗 83 5.3.2 第一軸補償實驗 85 5.3.4 空間軌跡規劃實驗 86 5.4 人機互動實驗 89 5.5 雙手臂協作實驗 91 第六章 結論與未來展望 96 6.1結論 96 6.2未來展望 97 參考文獻 98

    【1】 Ciupitu, L. and L. Vladareanu. “Adaptive Balancing by Counterweights of Robots and Mechatronic Systems.” International Journal of Modeling and Optimization 8, pp.178-182, 2018.
    【2】 K. Ahn, W. Lee and J. Song, “Reduction in gravitational torques of an industrial robot equipped with 2 DOF passive counterbalance mechanisms,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4344-4349, 2016.
    【3】 W. Lee, S. Lee and J. Song, “Design of a 6-DOF collaborative robot arm with counterbalance mechanisms,” 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 3696-3701, 2017.
    【4】 H. Kim, J. Min and J. Song, "Multi-DOF counterbalance mechanism for low-cost, safe and easy-usable robot arm," 2014 11th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 185-188, 2014.
    【5】 Mooring BW, Roth ZS, Driels MR. Fundamentals of manipulator calibration. New York: Wiley; 1991.
    【6】 F. Xi, “Effect of non-geometric errors on manipulator inertial calibration,” Proceedings of 1995 IEEE International Conference on Robotics and Automation, pp. 1808-1813 vol.2, 1995.
    【7】 J. H. Jang, S. H. Kim, and Y. K. Kwak, “Calibration of geometric and non-geometric errors of an industrial robot,” Robotica, vol. 19, no. 3, pp. 311–321, 2001.
    【8】 L. A. Zadeh, “Fuzzy sets,” Information and Control, Vol.8, pp. 338-353, 1965.
    【9】 E. H. Mamdani, “Application of Fuzzy Algorithms for control a Simple Dynamic Plants,” Proc. of IEEE, Vol.121, No.12, pp. 1585-11588, 1974.
    【10】 G. C. Hung, and S.C Lin, “A Stability Approach to Fuzzy Control Design for Nonlinear System,” Fuzzy Set and System, Vol. 48, Issue 3, pp.279-287,1992.
    【11】 楊宗賢, “輪轂馬達電動車之墊子差速與速度控制,” 碩士論文, 國立臺灣科技大學機械工程系, 2012
    【12】 賴柏儒, “以FPGA嵌入式系統為控制核心應用在五自由度機械手臂之機構設計與控制,” 碩士論文, 國立臺灣科技大學機械工程系, 2014
    【13】 A.-C. Huang and Y.-S. Kuo, “Sliding control ofnon-linear systems containing time-varying uncer-tainties with unknown bounds,” International Jour-nal of Control, vol. 74, no. 3, pp. 252–264, 2001.
    【14】 M. H. Raibert & J.J. Craig, “Hybrid Positon-Force Control of Manipulators,” ASME, J. Dyn. Syst., Meas., Contr., vol. 103, pp. 126-133, June 1981.
    【15】 游喬焜, “以系統晶片結合力量感測器發展具軌跡與力量控制功能之機械手臂,” 碩士論文, 國立臺灣科技大學機械工程系, 2009.
    【16】 G. Field and Y. Stepanenko, "Model reference impedance control of robotic manipulators," Proceedings of IEEE Pacific Rim Conference on Communications Computers and Signal Processing, vol.2, pp. 614-617, 1993.
    【17】 S. A. Schneider and R. H. Cannon, “Object impedance control for cooperative manipulation: theory and experimental results,” in IEEE Transactions on Robotics and Automation, vol. 8, no. 3, pp. 383-394, June 1992.
    【18】 D. Williams and O. Khatib, “The virtual linkage: a model for internal forces in multi-grasp manipulation,” [1993] Proceedings IEEE International Conference on Robotics and Automation, pp. 1025-1030 vol.1, 1993.
    【19】 O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg and A. Casal, “Vehicle/arm coordination and multiple mobile manipulator decentralized cooperation,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96, pp. 546-553 vol.2, 1996.
    【20】 K. Kosuge, H. Yoshida and T. Fukuda, “Dynamic control for robot-human collaboration,” Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communication, pp. 398-401, 1993.
    【21】 O. M. Al-Jarrah and Y. F. Zheng, “Arm-manipulator coordination for load sharing using variable compliance control,” Proceedings of International Conference on Robotics and Automation, pp. 895-900 vol.1, 1997.
    【22】 J. Denavit, and R. S. Hartenberg, “A Kinematics Notation for Lower Pair Mechanisms Based on Matrices,” ASME.,J.of Applied Mechanics 22, 1995
    【23】 C. s. g. Lee and M. Ziegler, "Geometric Approach in Solving Inverse Kinematics of PUMA Robots," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-20, no. 6, pp. 695-706, Nov. 1984.
    【24】 F. C. Park, K. M. Lynch, “Introduction to Robotics: Mechanics, Planning, and Control”, 2015.
    【25】 李佑琳, “嵌入式觸覺感測夾爪與機械手臂之整合,” 碩士論文, 國立臺灣科技大學機械工程系, 2014.
    【26】 劉浩德, “機械手臂手端位置與力量之遠端遙控,” 碩士論文, 國立臺灣科技大學機械工程系, 2015.
    【27】 陳柏璋, “以函數近似為基礎之適應控制研究及其於主動式懸吊系統之應用”
    【28】 陳名裕, “管道聲場之主動噪音控制,” 碩士論文, 國立臺灣科技大學機械工程系, 2004

    QR CODE