簡易檢索 / 詳目顯示

研究生: 吳俊德
Jiun-De Wu
論文名稱: 寬能隙硒化鋅鎘系列II-VI族化合物半導體量子井結構之光學特性研究
Optical Characterization of ZnCdSe-based II-VI Wide Bandgap Multiple Quantum Well Structures
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 陳永芳
Yang-Fang Chen
林浩雄
Hao-Hsiung Lin
程光蛟
Kwong-Kau Tiong
蔡大翔
Dah-Shyang Tsai
何清華
Ching-Hwa Ho
趙良君
Liang-Chiun Chao
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 102
中文關鍵詞: 調制光譜寬能隙半導體2-6族寬能隙半導體
外文關鍵詞: II-VI Wide bandgap semiconductor
相關次數: 點閱:294下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用光子調制反射光譜(PR)、非接觸式電場調制反射光譜(CER) 、光激發螢光光譜(PL)以及傅氏轉換紅外線光譜(FTIR)研究寬能隙硒化鋅鎘系列II-VI族化合物Zn0.46Cd0.54Se/Zn0.24Cd0.25Mg0.51Se與ZnxCd1-xSe/MgSe多重量子井以及Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se非對稱耦合量子井結構之光學特性。
利用非接觸式電場調制反射光譜與傅氏轉換紅外線光譜來探討Zn0.46Cd0.54Se/Zn0.24Cd0.25Mg0.51Se量子井光結構之學特性,非接觸式電場調制反射光譜可得到II-VI族寬能隙量子井結構當中可能的光學躍遷訊號。利用非接觸式電場調制反射光譜以及波包近似法(envelope function approximation)計算結果,可確認量子井結構當中來自基態(ground state)與激發態(excited state)的躍遷訊號,並可得到導電帶平移(conduction band offset)為0.75對應其導電帶能隙差(ΔEc)為0.64 eV,並利用傅氏轉換紅外線光譜量測技術估算與驗證E1-E2子能帶間(intersubband transition)的躍遷訊號。
使用光子調制反射光譜與光激發螢光光譜探討量子井寬度分別為4.4與3.2 nm之ZnxCd1-xSe/MgSe多重量子井結構光學特性當中,光激發螢光光譜可得到來自量子井基態復合的訊號(fundamental recombinatoin)與披覆層(cap layer)或間隔層(spacer layer)的訊號,並利用激發光功率變化之光激發光光譜以及溫度變化之光激發光光譜探討其量子井光學特性,光子調制反射光譜可得到量子井結構當中可能的光學躍遷訊號,搭配理論計算可得到導電帶平移(conduction band offset)為0.8對應其導電帶能隙差(ΔEc)為1.2 eV,說明利用高能隙II-VI MgSe可提升量子井結構中之導電帶能隙差(ΔEc),並且利用傅氏轉換紅外線光譜量測技術估算與驗證不同量子井寬度之子能帶間(intersubband transition)的躍遷訊號。
使用光子調制反射光譜與傅氏轉換紅外線光譜搭配探X光繞射與穿透式電子顯微鏡討Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se非對稱耦合量子井相關特性,X光繞射與穿透式電子顯微鏡可以鑑定樣品的品質與分析量子井寬度,配合波包近似法(envelope function approximation)計算結果,可量測以及確認非對稱耦合量子井結構當中來自基態(ground state)與激發態(excited state)的躍遷訊號,並且利用傅氏轉換紅外線光譜量測技術估算與驗證子能帶間(intersubband transition)的躍遷訊號。結果顯示光子調制反射光譜技術可準確的預估非對稱耦合量子井結構中子能帶間(intersubband transition)的躍遷訊號。
此外,並利用溫度變化非接觸式電場調制反射光譜與光激發螢光光譜探討Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se非對稱耦合量子井相關特性,非接觸式電場調制反射光譜可得到非對稱耦合量子井結構當中可能的光學躍遷訊號,光激發螢光光譜可得到來自量子井基態復合的訊號(fundamental recombinatoin),並且在低溫下,光激發螢光訊號在低能量處呈現指數型衰減,原因為位能波動起伏(potential fuctuation)所造成的激子複合(excitonic recombination)。最後,材料能隙相關躍遷及量子井中躍遷隨溫度變化的結果,可利用Varshni及Bose-Einstein兩方程式來得到其相關的溫度參數並加以討論。
從實驗結果可知調制光譜是非接觸、非破壞性的量測技巧,為研究中紅外發光元件雷射元件細微結構的有力工具。


In this thesis, we report a detailed optical characterization on several different selenide-based II-VI wide band gap quantum well structures by using photoreflectance (PR), contactless electroreflectance (CER), photoluminescence (PL) and Fourier transform infrared (FTIR) spectroscopy. The samples, included Zn0.46Cd0.54Se/Zn0.24Cd0.25Mg0.51Se, ZnxCd1-xSe/MgSe multiple quantum wells (MQWs) and Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se asymmetric coupled quantum well structures (ACQW), were fabricated by molecular beam epitaxy (MBE) on (001) semi-insulating InP substrates in a dual chamber Riber 2300P system.
The CER and FTIR spectroscopy were employed to study the optical properties of a Zn0.46Cd0.54Se/Zn0.24Cd0.25Mg0.51Se MQW structure. The CER spectrum revealed a wide range of the possible optical transitions in the MQW structure. The ground state transition was assigned by comparing with the photoluminescence emission signal taken from the same structure. Using CER and a theoretical envelope function approximation calculations, the ground state and higher order transitions were observed and identified. The conduction band offset was found to be 0.75 corresponding to ΔEc ~ 0.64 eV. Base on the obtained results, the E1-E2 intersubband transition energy was estimated to be ~400 meV. This value was further confirmed by FTIR absorption measurements.
The PL and PR techniques were used to characterize two ZnxCd1-xSe/MgSe multiple quantum well structures with different well widths. The nominal thicknesses of the ZnxCd1-xSe wells in the two samples were 4.4 and 3.2 nm and denoted as sample A and B, respectively. The peak positions of PL features yielded the values of fundamental recombination energies and the information of Zn contents of cap/spacer layers. The PR spectra revealed multitude of possible interband transitions in MQW structures. The ground state transitions were assigned by comparing with the PL emission signals taken from the same structures. A comprehensive analysis of the PR spectra led to the identification of various interband transitions. The conduction band band-offset was found to be 0.8 corresponding to a ΔEc of about 1.2 eV. The intersubband transition energies of samples A and B were estimated to be, respectively, about 245 and 408 meV and confirmed by FTIR absorption measurements.
The PR and FTIR spectroscopy together with XRD and TEM techniques were used to characterize a Zn0.48Cd0.52Se/Zn0.24Cd0.18Mg0.58Se ACQW structure. The material quality of the ACQW structure was analyzed using XRD and TEM. Using PR and theoretical envelope function approximation calculations, the ground state and higher order interband transitions were observed and identified. The intersubband transition energies of the ACQW sample were confirmed by FTIR absorption measurements. Reasonable agreements among the PR estimations, FTIR experimental results and theoretical simulation indicate that PR may be used to accurately predict intersubband transition energies of the ACQW structures.
In addition, temperature dependent CER and PL characterization of a ZnxCd1-xSe/Znx′Cdy′Mg1-x′-y′Se ACQW structure for quantum cascade laser application was also carried out as well. The CER spectra revealed a wide range of possible optical transitions in the ACQW structure. The ground state transition was assigned by comparing with the PL emission signal taken from the same structure. A comprehensive analysis of the CER spectra led to the identification of various interband transitions and the intersubband transitions were estimated and confirmed by FTIR absorption measurements. At low temperature, the PL spectrum shows an asymmetric behavior with an exponential tail at the lower-energy side and has been attributed to the localized excitonic recombinations due to potential fluctuations. Furthermore, detailed study of the temperature dependence of the excitonic transition energies indicates that the main influence of temperature on the quantized transitions is through the temperature dependence of the band gap of the constituent materials in the well. The obtained parameters for the temperature dependence of interband transitions may be useful for device applications.
The results demonstrated the potential of using PR, CER and PL as powerful techniques for the contactless and nondestructive characterization of the wide band gap II-VI MQW and ACQW structures for mid-IR intersubband device applications.

Contents Abstract………………………………………………………………………………I Acknowledgements…………………………………………………………………VI Contents……………………………………………………………………………VII Symbols and Abbreviations…………………………………………………………IX List of Figures…………………………………………………………………………XI List of Tables…….…………………………………………………………………XV Chapter 1 Introduction………………………………………………………………1 1.1 Introduction……………………………………………………………1 1.2 Outline of dissertation……………………………………………………5 Chapter 2 Experimental techniques and theoretical analysis …………………………8 2.1 Samples description………………………………………………………8 2.2 Experimental techniques and system setups……………………………13 2.2.1 Modulation spectroscopy techniques………………………….…13 2.2.2 Photoluminescence………………………………………………16 2.3 Theoretical analysis model……………………………………………18 2.3.1 Modulation spectroscopy lineshape……………………………18 2.3.2 Temperature dependence characteristics of semiconductor……21 Chapter 3 Characterization of a ZnxCd1-xSe/Znx′Cdy′Mg1-x′-y′Se multiple quantum well structure for midinfrared device applications by contactless electroreflectance and Fourier transform infrared spectroscope…………33 3.1 Room temperature contactless electroreflectance spectroscopy………33 3.2 Fourier transform infrared spectroscopy………………………………36 3.3 Summary………………………………………………………………37 Chapter 4 Photoluminescence and photoreflectance characterization of ZnxCd1-xSe/ MgSe multiple quantum wells……………………………………………42 4.1 Room temperature photoluminescence………………………………42 4.2 Excitation power dependent photoluminescence……………………43 4.3 Temperature dependence of the photoluminescence intensity………44 4.4 Room temperature photoreflectance spectroscopy……………………45 4.5 Summary………………………………………………………………48 Chapter 5 Photoreflectance and Fourier transform infrared spectroscopy study of intersubband transitions of a ZnxCd1-xSe/Znx′Cdy′Mg1-x′-y′Se asymmetric coupled quantum well structure for quantum cascade laser application………………………………………………………………57 5.1 Asymmetric coupled quantum well (ACQW) structure………………57 5.2 Room temperature photoreflectance spectroscopy……………………58 5.3 Fourier transform infrared spectroscopy………………………………60 5.4 Summary………………………………………………………………62 Chapter 6 Temperature-dependent photoluminescence and contactless electroreflectance characterization of a ZnxCd1-xSe/Znx′Cdy′Mg1-x′-y′Se asymmetric coupled quantum well structure………………………68 6.1 Temperature dependent photoluminescence…………………………69 6.2 Contactless electroreflectance spectroscopy…………………………70 6.3 Intersubband absorption of the ACQW structure……………………72 6.4 Temperature dependence of the photoluminescence intensity………73 6.5 Excitation power dependent photoluminescence……………………73 6.6 Temperature dependent contactless eletroreflectance…………………74 6.7 Summary………………………………………………………………76 Chapter 7 Conclusions………………………………………………………………88 References……………………………………………………………………………92 Autography…………………………………………………………………………98 Publications…………………………………………………………………………99

References:
[1]B. F. Levine, “Quantum‐well infrared photodetectors”, J. Appl. Phys., Vol.74, No.8, pp.R1-R81 (1993).
[2]C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications”, Rep. Prog. Phys., Vol.64, pp.1533-1601 (2001).
[3]J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser”, Science, Vol.264, No.22, pp.553-556 (1994).
[4]M. Sohel, X. Zhou, H. Lu, M. N. Perez-Paz, M. Tamargo, and M. Muňoz, “Optical characterization and evaluation of the conduction band offset for ZnCdSe/ZnMgSe quantum wells grown on InP(001) by molecular-beam epitaxy”, J. Vac. Sci. Technol. B, Vol.23, No.3, pp.1209-1211 (2005).
[5]K. J Franz, W. O. Charles, A. Shen, A. J. Hoffman, M. C. Tamargo, and C. Gmachl, “ZnCdSe/ZnCdMgSe quantum cascade electroluminescence”, Appl. Phys. Lett., Vol.92, pp.121105-1-121105-3 (2008).
[6]M. Muňoz, H. Lu , X. Zhou, M. C. Tamargo, and F. H. Pollak, “Band offset determination of Zn0.53Cd0.47Se/Zn0.29Cd0.24Mg0.47Se”, Appl. Phys. Lett., Vol.83, No.10, pp.1995-1997 (2003).
[7]A. Shen, H. Lu, M. C. Tamargo, W. Charles , I. Yokomizo, C. Y. Song, H. C. Liu, S. K. Zhang, X. Zhou, R. R. Alfano, K. J. Franz, and C. Gmachl, “Intersubband transitions in molecular-beam-epitaxy-grown wide band gap II-VI semiconductors”, J. Vac. Sci. Technol. B, Vol.25, No.3, pp.995-998 (2007).
[8]H. Lu, A. Shen, M. C. Tamargo, C. Y. Song, H. C. Liu, S. K. Zhang, R. R. Alfano, and M. Muňoz, ““Midinfrared intersubband absorption in ZnxCd1−xSe/Znx′Cdy′Mg1−x′−y′Se multiple quantum well structures”, Appl. Phys. Lett., Vol.89, pp.131903-1-131903-3 (2006).
[9]B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflugl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone,D. Bour, S. Corzine, G. Höflerg, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy”, Appl. Phys. Lett., Vol.91, pp.231101-1-231101-3 (2006).
[10]M. P. Semtsiv, M. Wienold, S. Dressler, and W. T. Masselink, “Short-wavelength (λ ≈ 3.05 μm) InP-based strain-compensated quantum-cascade laser”, Appl. Phys. Lett., Vol.90, pp.051111-1-051111-3 (2007).
[11]E. A. DeCuir, Jr., E. Fred, M. O. Manasreh, J. Schörmann, D. J. As, and K. Lischka, “Near-infrared intersubband absorption in nonpolar cubic GaN/AlN superlattices”, Appl. Phys. Lett., Vol.91, pp.041911-1-041911-3 (2007).
[12]O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal processing”, New J. Phys., Vol.6, No.183, pp.1-35 (2004).
[13]B. S. Li, R. Akimoto, K. Akita, and H. Hasama, “Structural study of (CdS/ZnSe)/BeTe superlattices for λ=1.55 μm intersubband transition”, J. Appl. Phys., Vol.95, No.10, pp.5352-5359 (2004).
[14]B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Midinfrared intersubband absorption in wide band gap II-VI ZnxCd1−xSe multiple quantum wells with metastable zincblende MgSe barriers”, Appl. Phys. Lett., Vol.92, pp.261104-1-261104-3 (2008).
[15]A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm”, Appl. Phys. Lett., Vol.92, pp.111110-1-111110-3 (2008).
[16]R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, “Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths”, Appl. Phys. Lett., Vol.78, pp.2620-1-2620-3 (2001).
[17]J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, and M. Razeghi, “Room-temperature continuous-wave operation of quantum-cascade lasers at λ ∼ 4 μm”, Appl. Phys. Lett., Vol.88, pp.041111-1-041111-3 (2006).
[18]J. Devenson, O. Cathabard, R. Teissier, and A. N. Baranov, “InAs/AlSb quantum cascade lasers emitting at 2.75–2.97 μm”, Appl. Phys. Lett., Vol.91, pp.251102-1-251102-3 (2007).
[19]J. Devenson, D. Barate, O. Cathabard, R. Teissier, and A. N. Baranov, “Very short wavelength (λ = 3.1–3.3 μm) quantum cascade lasers”, Appl. Phys. Lett., Vol.89, pp.191115-1-191115-3 (2006).
[20]D. G. Revin, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, A. B. Krysa, L. R. Wilson, and S. Menzel, “InGaAs/AlAsSb/InP quantum cascade lasers operating at wavelengths close to 3 μm”, Appl. Phys. Lett., Vol.90, pp.021108-1-021108-3 (2007).
[21]M. Sohel, M. Muñoz, and M. C. Tamargo, “Molecular beam epitaxial growth and characterization of zinc-blende ZnMgSe on InP (001)”, Appl. Phys. Lett., Vol.85, pp.2794-1-2794-3 (2004).
[22]L. Zeng, B. X. Yang, M. C. Tamargo, E. Snoeks, and L. Zhao, “Quality improvements of ZnxCdyMg1−x−ySe layers grown on InP substrates by a thin ZnCdSe interfacial layer”, Appl. Phys. Lett., Vol.72, No.11, pp.1317-1319 (1998).
[23]L. Zeng, S. P. Guo, Y. Y. Luo, W. Lin, M. C. Tamargo, H. Xing, and G. S. Cargill, “Defect reduction of ZnxCdyMg1−x−ySe based structures grown on InP by using Zn irradiation of the III–V surface”, J. Vac. Sci. Technol. B, Vol.17, No.3, pp.1255-1258 (1999).
[24]S. P. Guo, L. Zeng, and M. C. Tamargo, “Quaternary Znx′Cdy′Mg1−x′−y′Se/ZnxCdyMg1−x−ySe quantum wells grown on InP substrates for blue emission”, Appl. Phys. Lett., Vol.78, No.1, pp.1-3 (2001).
[25]B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Growth and properties of wide bandgap MgSe/ZnxCd1−xSe multiple quantum wells for intersubband devices operating at short wavelengths”, J. Cryst. Growth, Vol.311, pp.2113-2115 (2009).
[26]B. S. Li, A. Shen, W. O. Charles, Q. Zhang, and M. C. Tamargo, “Midinfrared intersubband absorption in wide band gap II-VI ZnxCd1−xSe multiple quantum wells with metastable zincblende MgSe barriers”, Appl. Phys. Lett., Vol.92, pp.261104-1-261104-3 (2008).
[27]M. Cardona, Modulation Spectroscopy, Academic, New York, (1969).
[28]Y. Hamakawa, and T. Nishino, Optical Properties of Solids: New Developments, North-Holland, Amsterdam, p.255 (1970).
[29]F. H. Pollak, “Modulation Spectroscopy of Semiconductors and Semiconductor Microstructures”, Handbook on Semiconductors, Vol.2, ed. M. Ballanski, North-Holland, New York, pp.524-635 (1994).
[30]X. Yin, and F. H. Pollak, “Novel Contactless Mode of Electroreflectance”, Appl. Phys. Lett., Vol.59, No.18, pp.2305-2307 (1991).
[31]X. Yin, X. Guo, F. H. Pollak, G. D. Pettit, J. M. Woodall, T. P. Chin, and C. W. Tu, “Nature of Band Bending at Semiconductor Surfaces by Contactless Electroreflectance”, Appl. Phys. Lett., Vol.60, No.11, pp.1336-1338 (1992).
[32]H. Shen, S. H. Pan, F. H. Pollak, and R. N. Sacks, “Electromodulation Mechanisms for the Uncoupled and Coupled States of a GaAs/Ga0.82Al0.18As Multiple-Quantum-Well Structure”, Phys. Rev. B, Vol.37, No.18, pp.10919-10922 (1988).
[33]H. Mathieu, H., J. Allègre, and B. Gil, “Piezomodulation Spectroscopy: A Powerful Investigation Tool of Heterostructures”, Phys. Rev. B, Vol.43, No.3, pp.2218-2227 (1981).
[34]C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical Thermoreflectance Design For Optical Characterization of Layer Semiconductors”, Rev. Sci. Instrum., Vol.75, No.4, pp.1098-1102 (2004).
[35]Z. Xu, and M. Gal, “Temperature Modulated Photoluminescence in Semiconductor Quantum Wells”, Superlattices Microstruct., Vol.12, No.3, pp.393-396 (1992).
[36]Y. S. Huang, and F. H. Pollak, “Non-Destructive, Room Temperature Characterization of Wafer-Sized III–V Semiconductor Device Structures using Contactless Electromodulation and Wavelength-Modulated Surface Photovoltage Spectroscopy”, Phys. Stat. Sol. (a), Vol.202, No.7, pp.1193-1207 (2005).
[37]F. H. Pollak, and H. Shen, “Modulation Spectroscopy of Semiconductors: Bulk/Thin Film, Microstructures, Surfaces/Interfaces and Devices”, Mater. Sci. Eng. R, Vol.10, No.7-8, pp.275-374 (1993).
[38]J. Misiewicz, P. Sitarek, G. Sęk, and R. Kudrawiec, “Semiconductor Heterostructures and Device Structures Investigated by Photoreflectance Spectrosopy”, Mater. Sci., Vol.21, No.3, pp.263-320 (2003).
[39]H. Shen, P. Parayanthal, Y. F. Lin, and F. H. Pollak, “New Normalization Procedure for Modulation Spectroscopy”, Rev. Sci. Instum., Vol.58, No.8, pp.1429-1432 (1987).
[40]G. D. Gilliland, “Photoluminescence spectroscopy of crystalline semiconductors”, Mater. Sci. Eng. R, Vol.18, pp.99-399 (1997).
[41]E. Calleja, F. J. Sánchez, D. Basak, M. A. Sánchez-García, E. Muñoz, I. Izpura, F. Calle, J. M. G. Tijero, J. L. Sánchez-Rojas, B. Beaumont, P. Lorenzini, and P. Gibart, “Yellow luminescence and related deep states in undoped GaN,” Phys. Rev. B, Vol.55, No.7, pp.4689-4694 (1997).
[42]B. O Seraphin, and N. Bottka, “Band-Structure Analysis from Electro-Reflectance Studies”, Phys. Rev., Vol.145, No.2, pp.628-636 (1966).
[43]D. W. Aspnes, and A. A. Studna, “Schottky-Barrier Electroreflectance: Application to GaAs”, Phys. Rev. B, Vol.7, No.10, pp.4605-4625 (1973).
[44]D. E. Aspnes, and B. O. Seraphin, “Electric Field Effects in Optical and First-Derivative Modulation Spectroscopy”, Phys. Rev. B, Vol.6, No.8, pp.3158-3160 (1972).
[45]D. E. Aspnes, Handbook on Semiconductor Vol.2, ed. by T. S. Moss, North-Holland, New York. p.109 (1980).
[46]Y. P. Varshni, “Temperature Dependence of Energy Gap in Semiconductors”, Physica (Amsterdam) Vol.34, No.1, pp.149-154 (1967).
[47]L. Viña, S. Logothetidis, and M. Cardona, “Temperature Dependence of the Dielectric Function of Germanium”, Phys. Rev. B, Vol.30, No.4, pp.1979-1991 (1984).
[48]P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband Critical Points of GaAs and Their Temperature Dependence”, Phys. Rev. B, Vol.35, No.17, pp.9174-9189 (1987).
[49]P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature Dependence of the Interband Critical-Point Parameters of InP”, Phys. Rev. B, Vol.36, No.9, pp.4813-4820 (1987).
[50]T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, “Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP”, Phys. Rev. B, Vol.56, No.7, pp.4037-4046 (1997).
[51]H. C. Liu, and F Capasso, “Intersubband Transitions in Quantum Wells: Physics and Device Applications I & II, Semiconductors and Semimetals”, San Diego: Academic, Vol.62-66, (2000).
[52]Y. D. Kim, M. V. Klein, S. F. Ren, Y. C. Chang, H. Luo, N. Samarth, and J. K. Furdyna, "Optical properties of zinc-blende CdSe and ZnxCd1-xSe films grown on GaAs", Phys. Rev. B, Vol.49, No.11, pp.7260-7270 (1994).
[53]J. E. Fouquet, and A. E. Siegman, "Room‐temperature photoluminescence times in a GaAs/AlxGa1−xAs molecular beam epitaxy multiple quantum well structure", Appl. Phys. Lett., Vol.46, No.3, pp.280-282 (1985).
[54]R. Kudrawiec, L. Bryja, J. Misiewicz, and A. Forchel, “Temperature evolution of photoluminescence from an In0.22Ga0.78Sb/GaSb single quantum well”, Mat. Sci. Eng. B, Vol.110, pp.42-45 (2004).
[55]O. Maksimov, S. P. Guo S P, M. Muňoz, and M. C. Tamargo, “Optical properties of BeCdSe/ZnCdMgSe strained quantum well structures”, J. Appl. Phys., Vol.90, No.10, pp.5135-5138 (2001).
[56]S. A. Lourenço, I. F. L. Dias, L. C. Poças, J. L. Duarte, J. B. B. de Oliverira, and J. C. Harmand, “Effect of temperature on the optical properties of GaAsSbN/GaAs single quantum wells grown by molecular-beam epitaxy”, J. Appl. Phys., Vol.93, No.8, pp.4475-4479 (2003).
[57]T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, Phys. Rev. B, Vol.56, pp.4037 (1997).
[58]O. Madelung, M. Schultz, H. Weiss (Eds.), Semiconductors, Landolt-Börnstein, New Series, Group III, Vol. 17b, Springer, New York, 1982.
[59]H. Lu, A. Shen, W. Charles, I. Yokomizo, M. C. Tamargo, K. J. Franz, C. Gmachl, and M. Muňoz, “Optical characterization of intersubband transitions in ZnxCd1−xSe/Znx′Cdy′Mg1−x′−y′Se multiple quantum well structures by contactless electroreflectance”, Appl. Phys. Lett., Vol.89, pp.241921-1-241921-3 (2006).
[60]Nextnano3 nextgeneration 3D device simulator, the program is available at: http: //www.nextnano.de/nextnano3.
[61]O. Madelung, M. Schultz, and H. Weiss, “Numerical Data and Functional Relationships in Science and Technology”, Landolt-Börnstein, Vol. III/11, Springer, New York (1982).
[62]A. Shen, W. O. Charles, B. S. Li, K. J. Franz, C. Gamchl, Q. Zhang, and M. C. Tamargo, “Wide band gap II–VI selenides for short wavelength intersubband devices”, J. Cryst. Growth, Vol.311, pp.2109-2112 (2009).
[63]R. Cingolani, F. Sogawa, Y. Arakawa, L. Vanzetti, L. Sorba, and A. Franciosi, ”Microprobe spectroscopy of localized exciton states in II–VI quantum wells”, Appl. Phys. Lett., Vol.73, No.2, pp.148-150 (1998).
[64]S. A. Lourenco, I. F. L. Dias, L. C. Pocas, J. L. Duarte, J. B. B. de Oliverira, and J. C. Harmand, ”Effect of temperature on the optical properties of GaAsSbN/GaAs single quantum wells grown by molecular-beam epitaxy”, J. Appl. Phys. Vol.93, No.8, pp.4475-4479 (2003).
[65]M. Dina, J. E. Cunningham, F. Quochi, and J. Shan, “Optical properties of strained antimonide-based heterostructures”, J. Appl. Phys., Vol.94, No.3, pp.1506-1512 (2003).
[66]I. A. Buyanova, W. M. Chen, G. Pozina, J. P. Bergman, B. Monemar, H. P. Xin, and C. W. Tu, “Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy”, Appl. Phys. Lett., Vol.75, No.4, pp.501-503 (1999).
[67]H. P. D. Schenk, M. Leroux, and P. de Mierry, “Luminescence and absorption in InGaN epitaxial layers and the van Roosbroeck–Shockley relation”, J. Appl. Phys., Vol.88, No.3, pp.1525-1534 (2000).
[68]M. Yin, G. R. Nash, S. D. Coomber, L. Buckle, P. J. Carrington, A. Krier, A. Andreev, S. J. B. Przeslak, G. de Valicourt, S. J. Smith, M. T. Emeny, and T. Ashley, “GaInSb/AlInSb multi-quantum-wells for mid-infrared lasers”, Appl. Phys. Lett., Vol.93, pp.121106-1-121106-3 (2008).
[69]J. E. Fouquet, and A. E. Siegman, “Room‐temperature photoluminescence times in a GaAs/AlxGa1−xAs molecular beam epitaxy multiple quantum well structure”, Appl. Phys. Lett., Vol.46, No.3, pp.280-282 (1985).
[70]S. Logothetidis, M. Cardona, P. Lautenschlager, and M. Garriga, “ Temperature dependence of the dielectric function and the interband critical points of CdSe“, Phys. Rev. B, Vol.34, pp.2458-2469 (1986).
[71]L. Malikova, W. Krystek, F. H. Pollak, N. Dai, N.A. Cavus, and M.C. Tamargo, “Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se”, Phys. Rev. B, Vol.54, pp.1819-1824 (1996).

QR CODE