簡易檢索 / 詳目顯示

研究生: 許晉豪
HSU, CHIN-HAO
論文名稱: 電泳沉積奈米銀線及聚二氧乙基噻吩聚苯乙烯磺酸透明導電層應用於電致發光之電極研究
Electrophoretic deposition of PEDOT:PSS and AgNWs transparent conductive films for electroluminescent electrode
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 陳錦江
JIENG-CHIANG CHEN
朱維政
Chu, Wei-Zheng
邱顯堂
Hsien-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 電致發光透明電極電泳沉積奈米銀線導電高分子
外文關鍵詞: Conjugated polymer, Transparent electrode, Electrophoretic deposition, Silver nanowires, Electroluminescence
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透明電極的品質將影響電致發光之發光效果,因此透明電極於電致發光元件中扮演非常重要的角色。目前大多以聚二氧乙基噻吩聚苯乙烯磺酸(PEDOT:PSS)和奈米銀線(AgNWs)當作透明電極材料塗布於電致發光基材上。然而,目前這些透明電極通常使用旋轉或刮刀塗布來製備。上述方法將導致粗糙表面和不均勻之厚度並且與基材間有較差之鍵結,因此透明電極容易從電致發光基材上剝離,使表面電阻上升。
    為了解決上述問題,本實驗透過在電致發光基材表面接枝-NH3 +官能基,從而可以透過電泳沉積(Electrophoretic deposition, EPD)將PEDOT:PSS披覆於電致發光基材上。其擁有-NH3 +官能基基材表面因而可以與PEDOT:PSS中的-SO3-官能基產生離子吸引,改善這兩種材料間之界面,並使表面平坦化同時降低表面電阻,以使AgNWs更均勻且有效率再披覆其上以期進一步降低表面電阻;透過改變電泳時間和溶液濃度來控制沉積厚度,並進一步研究電泳參數對其電阻和透明度之關係。最後得到表面電阻261.2Ω/ sq,厚度為305nm的PEDOT:PSS-AgNWs複合透明電極,並成功的將此透明電極應用於電致發光元件中。


    Transparent Conducting Electrodes(TCEs) play an important part in electroluminescence device, since the conductivity of the TCEs affect the luminous result. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and silver nanowires (AgNWs) are commonly coated on electroluminescent subtracts acting as the TCEs. However, most of these TCEs were generally fabricated by spray coating or rod coating nowadays. These methods lead to rough surfaces and uneven thickness, which not only cause the TCE to be easily peeled-off from the electroluminescent film through exterior forces but also increase the surface resistance.
    To solve these problems, we demonstrate novel methods through grafting -NH3+ functional groups on to the surface of electroluminescent subtracts, so that PEDOT:PSS can be deposited onto electroluminescent subtracts by electrophoretic deposition (EPD). The surface with -NH3+ can attract the -SO3- functional groups in PEDOT:PSS, thus improving interface between these two materials, and making the surface conductive at the same time. This conductive substrate is suitable for depositing AgNWs by EPD. The thickness can be controlled by varying the electrophoresis time and solution concentration. Next, we research the effect of EPD parameters on its resistance and transparency. Finally, the PEDOT:PSS-AgNWs hybrid TCE exhibit resistance of 261.2Ω/ sq with 305nm thickness. Moreover, it applied to the electroluminescent element successfully.

    摘要 I Abstract II 圖目錄 VI 表目錄 VIII 中英對照表 IX 第一章 前言 1 1.1. 引言 1 1.2研究動機與目的 3 第二章 文獻回顧與基礎理論 5 2.1透明導電材料 5 2.2電泳原理 11 2.2.1電泳沉積法 11 2.2.2表面電位基本概念 12 2.2.3電雙層理論 13 2.3電致發光原理 16 第三章 實驗 17 3.1藥品 17 3.2實驗流程 18 3.3試片製備 19 3.3.1 發光薄膜製備及表面改質 19 3.3.2 奈米銀線及PEDOT:PSS電泳溶液配製 21 3.3.3 奈米銀線及PEDOT:PSS電泳溶液Zeta電位分析 21 3.3.4 PEDOT:PSS電泳沉積實驗 23 3.4實驗設備與分析儀器 26 3.4.1 實驗設備 26 3.4.2分析儀器 27 第四章 結果與討論 29 4.1 ZnS:Cu/TPU薄膜奈米銀線電泳沉積 29 4.2表面改質及表面官能基鑑定 30 4.3 ZnS:Cu/TPU表面改質後奈米銀線電泳沉積 31 4.4 PEDOT:PSS電泳沉積 33 4.4.1 PEDOT:PSS電泳沉積時間對沉積重量之探討 33 4.4.2 PEDOT:PSS附著力分析 35 4.4.3 電泳沉積PEDOT:PSS表面電阻及透光度分析 36 4.4.4 電泳沉積PEDOT:PSS之表面形態分析 37 4.5奈米銀線電泳沉積 39 4.5.1奈米銀線電泳沉積表面電阻及透光度分析 39 4.5.2 奈米銀線電泳沉積之表面形態分析 42 第五章 結論 43 第六章 參考文獻 44

    (1) 盧郁婷; 邢文灝; 陳霈璟; 李念庭. 電致發光紗線塗層均勻度之研究. 華岡紡織期刊 2012, 19 (3), 154-161.
    (2) 關宇豪; 周家皓; 邢文灝. 電致發光導電布防水性質塗佈之研究. 華岡紡織期刊 2016, 23 (2).
    (3) Christof, G.; Scholz, M.; Leber, A.; Mair, M.; Lexer, F.; Altenberger, E., Decorative composite body having a transparent, electrically conductive layer and a solar cell. Google Patents: 2019.
    (4) Alamri, S.; Brinkman, A. The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells. Journal of Physics D: Applied Physics 2000, 33 (1), L1.
    (5) Pan, C.; Ma, T. High‐quality transparent conductive indium oxide films prepared by thermal evaporation. Applied Physics Letters 1980, 37 (2), 163-165.
    (6) Ataev, B.; Bagamadova, A.; Djabrailov, A.; Mamedov, V.; Rabadanov, R. Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD. Thin solid films 1995, 260 (1), 19-20.
    (7) Jia, L.; Lü, Z.; Huang, X.; Liu, Z.; Chen, K.; Sha, X.; Li, G.; Su, W. Preparation of YSZ film by EPD and its application in SOFCs. Journal of alloys and compounds 2006, 424 (1-2), 299-303.
    (8) Pathak, T. K.; Rajput, J. K.; Kumar, V.; Purohit, L.; Swart, H.; Kroon, R. Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method. Journal of colloid and interface science 2017, 487, 378-387.
    (9) Yamada, T.; Miyake, A.; Makino, H.; Yamamoto, N.; Yamamoto, T. Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge. Thin Solid Films 2009, 517 (10), 3134-3137.
    (10) Minami, T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films 2008, 516 (17), 5822-5828.
    (11) Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano 2010, 4 (5), 2955-2963.
    (12) Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced functional materials 2012, 22 (2), 421-428.
    (13) Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters 2009, 9 (12), 4359-4363.
    (14) Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano letters 2006, 6 (9), 1880-1886.
    (15) Madaria, A. R.; Kumar, A.; Ishikawa, F. N.; Zhou, C. Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research 2010, 3 (8), 564-573.
    (16) Akter, T.; Kim, W. S. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS applied materials & interfaces 2012, 4 (4), 1855-1859.
    (17) Hauger, T. C.; Al-Rafia, S. I.; Buriak, J. M. Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity. ACS applied materials & interfaces 2013, 5 (23), 12663-12671.
    (18) Kang, H.; Kim, Y.; Cheon, S.; Yi, G.-R.; Cho, J. H. Halide welding for silver nanowire network electrode. ACS applied materials & interfaces 2017, 9 (36), 30779-30785.
    (19) Liu, C.-H.; Yu, X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale research letters 2011, 6 (1), 75.
    (20) Chung, C.-H.; Song, T.-B.; Bob, B.; Zhu, R.; Yang, Y. Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices. Nano Research 2012, 5 (11), 805-814.
    (21) Leem, D. S.; Edwards, A.; Faist, M.; Nelson, J.; Bradley, D. D.; De Mello, J. C. Efficient organic solar cells with solution‐processed silver nanowire electrodes. Advanced Materials 2011, 23 (38), 4371-4375.
    (22) Langley, D.; Giusti, G.; Mayousse, C.; Celle, C.; Bellet, D.; Simonato, J.-P. Flexible transparent conductive materials based on silver nanowire networks: a review. Nanotechnology 2013, 24 (45), 452001.
    (23) 王家俊. 以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜. 成功大學化學工程學系學位論文 2003, 1-76.
    (24) Shanthi, E.; Banerjee, A.; Dutta, V.; Chopra, K. Electrical and optical properties of tin oxide films doped with F and (Sb+ F). Journal of Applied Physics 1982, 53 (3), 1615-1621.
    (25) Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. Journal of the Chemical Society, Chemical Communications 1977, (16), 578-580.
    (26) Geim, A. K.; Novoselov, K. S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals; World Scientific: 2010; pp 11-19.
    (27) Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes--the route toward applications. science 2002, 297 (5582), 787-792.
    (28) Casagrande, T.; Imin, P.; Cheng, F.; Botton, G. A.; Zhitomirsky, I.; Adronov, A. Synthesis and electrophoretic deposition of single-walled carbon nanotube complexes with a conjugated polyelectrolyte. Chemistry of Materials 2010, 22 (9), 2741-2749.
    (29) Zhang, J.; Gao, L.; Sun, J.; Liu, Y.; Wang, Y.; Wang, J. Incorporation of single-walled carbon nanotubes with PEDOT/PSS in DMSO for the production of transparent conducting films. Diamond and Related Materials 2012, 22, 82-87.
    (30) Song, Y.; Kim, S.; Heller, M. J. An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS applied materials & interfaces 2017, 9 (48), 42302-42312.
    (31) Oytun, F.; Kara, V.; Alpturk, O.; Basarir, F. Fabrication of solution-processable, highly transparent and conductive electrodes via layer-by-layer assembly of functional silver nanowires. Thin Solid Films 2017, 636, 40-47.
    (32) Tien, H.-W.; Hsiao, S.-T.; Liao, W.-H.; Yu, Y.-H.; Lin, F.-C.; Wang, Y.-S.; Li, S.-M.; Ma, C.-C. M. Using self-assembly to prepare a graphene-silver nanowire hybrid film that is transparent and electrically conductive. Carbon 2013, 58, 198-207.
    (33) Kim, B.-J.; Han, S.-H.; Park, J.-S. Properties of CNTs coated by PEDOT: PSS films via spin-coating and electrophoretic deposition methods for flexible transparent electrodes. Surface and Coatings Technology 2015, 271, 22-26.
    (34) Kim, Y.-S.; Lee, E.-J.; Lee, J.-T.; Hwang, D.-K.; Choi, W.-K.; Kim, J.-Y. High-performance flexible transparent electrode films based on silver nanowire-PEDOT: PSS hybrid-gels. RSC Advances 2016, 6 (69), 64428-64433.
    (35) Altin, Y.; Tas, M.; Borazan, İ.; Demir, A.; Bedeloglu, A. Solution-processed transparent conducting electrodes with graphene, silver nanowires and PEDOT: PSS as alternative to ITO. Surface and Coatings Technology 2016, 302, 75-81.
    (36) Choi, D. Y.; Kang, H. W.; Sung, H. J.; Kim, S. S. Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 2013, 5 (3), 977-983.
    (37) Kim, Y.-S.; Chang, M.-H.; Lee, E.-J.; Ihm, D.-W.; Kim, J.-Y. Improved electrical conductivity of PEDOT-based electrode films hybridized with silver nanowires. Synthetic Metals 2014, 195, 69-74.
    (38) Besra, L.; Liu, M. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in materials science 2007, 52 (1), 1-61.
    (39) Hamaker, H. Formation of a deposit by electrophoresis. Transactions of the Faraday Society 1940, 35, 279-287.
    (40) Hamaker, H.; Verwey, E. Part II.—(C) Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena. Transactions of the Faraday Society 1940, 35, 180-185.
    (41) Koelmans, H. Suspensions in non aqueous media, na: 1955.
    (42) Chen, C.-Y.; Chen, S.-Y.; Liu, D.-M. Electrophoretic deposition forming of porous alumina membranes. Acta materialia 1999, 47 (9), 2717-2726.
    (43) Michel, A.; Suzuki, K. Zeta potential of colloids in water and waste water. ASTM Standard D, American Society for Testing and Materials 1985, 44, 4187-4282.
    (44) El-Deen, G. E. S.; Imam, N. G.; Ayoub, R. R. Preparation, characterization and application of superparamagnetic iron oxide nanoparticles modified with natural polymers for removal of 60Co-radionuclides from aqueous solution. Radiochimica Acta 2017, 105 (2), 141-159.
    (45) Nakayama, K.; Ino, T.; Matsubara, I. Infrared spectra and structure of polyurethane elastomers from polytetrahydrofuran, diphenylmethane-4, 4′-diisocyanate, and ethylenediamine. Journal of Macromolecular Science—Chemistry 1969, 3 (5), 1005-1020.

    無法下載圖示 全文公開日期 2024/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE