簡易檢索 / 詳目顯示

研究生: 林秉宏
Ping-Hung Lin
論文名稱: 以電泳沉積法製備 SDC 薄膜應用於固態氧化物燃料電池之研究
Preparation of SDC thin film by electrophoretic deposition method for solid oxide fuel cell
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 周振嘉
Chen-Chia Chou  
劉端祺
Tuan-Chi Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 133
中文關鍵詞: SDC電解質單氣室固態氧化物燃料電池陽極基材電泳沉積法SSC 陰極材料
外文關鍵詞: Single.chamber solid oxide fuel cell, Anode substrate, Eeletrophoretic deposition method, Samaria doped cerium electrolyte, SSC cathode
相關次數: 點閱:295下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在以 NiO.SDC (Ce0.8Sm0.2O1.9) 為陽極基材,並採用電泳沉積法 ( Electrophoretic deposition – EPD ) 製備SDC電解質薄膜層應用於單氣室之固態氧化物燃料電池 ( SC–SOFC ) 研究。本論文之研究重點為探討以不同參數進行電泳沉積與電解質薄膜層之厚薄對於電池效率之影響,其參數分別為外加電壓、粒徑大小、懸浮液濃度與沉積時間。並藉由電子顯微鏡(SEM) 與交流阻抗(AC.impedance) 來分析 SDC 電解質薄膜層之性質。
    由實驗結果得知,以電泳沉積法所製備之 SDC 電解質薄膜層,可藉由操作電壓、沉積時間與懸浮液濃度來控制其電解質薄膜層之厚薄,而電解質薄膜層之緻密性則可藉由電解質粒徑之大小來控制。
    本實驗以甲烷為燃料,將製備好之電池 ( Ni.SDC/SDC/SSC )於溫度為 500.700℃ 下進行測試,由測試結果得知,以粒徑大小為 248 nm 之 SDC 電解質配製電泳懸浮液,濃度為 5 g/L SDC ,於電壓為 60V 下沉積一分鐘後所製備之電池其 SDC 電解質薄膜層薄而緻密,且效率最好,其厚度為 18 µm ,且於溫度為 500 ℃ 時其最大電功密度值 ( Power density ) 與開環電位值 ( OCV ) 分別為 155 ( mW/cm2 ) 與 0.92V 。


    The main purpose of this study is to use eletrophoretic deposition method (EPD) to prepare samaria doped cerium (SDC) electrolyte thin film on NiO.SDC anode substrate for single.chamber solid oxide fuel cell (SC.SOFC).The effects of EPD processing variables, including applied voltage, SDC particle size, concentration of the suspension and deposition time on the SDC film were exploned. The SDC thin film were characterized by SEM and AC impedance. The assembled SOFC (SSC as cathode) was tested for power density using CH4 and air as fuel.
    The experimental results show that the thickness of the SDC film could be controlled by applied voltage, concentration of the suspension and deposition time. Meanwhile, the density of the SDC particle size, the more dense of the SDC film will be.
    For testing the assembled SOFC at 500.700℃, the best power density performance was obtained when using the SDC film prepared under the condiction of 60 V, 1.0 min, 248 nm and 5 g/L solvent concentration.The maximum power density thus obtained at 500 ℃ is 155 mw/cm2.

    摘要.............................................................................................................I Abstract .....................................................................................................II 致謝 .........................................................................................................III 目錄...........................................................................................................IV 圖目錄.....................................................................................................VIII 表目錄...................................................................................................…XII 符 號 說 明...........................................................................................XIII 第一章 緒論................................................................................................1 1.1 前言.......................................................................................................1 1.2 研究動機...............................................................................................3 第二章 文獻回顧........................................................................................5 2.1 燃料電池簡介.......................................................................................3 2.2 固態氧化物燃料電池簡介...................................................................8 2.2.1 固態氧化物燃料電池之架構...........................................................11 2.2.2 固態氧化物燃料電池之電池組支撐方式.......................................12 2.2.3 固態氧化物燃料電池於不同燃料反應下之比較...........................13 2.2.4 固態氧化物燃料電池之燃料與氧氣的供應方式...........................16 2.3 固態氧化物燃料電池電解質..............................................................18 2.3.1 電解質離子導電性...........................................................................20 2.3.2 螢石結構氧化物...............................................................................21 2.3.3 鈣鈦礦結構氧化物...........................................................................25 2.4 粉體製備..............................................................................................27 2.5 電解質層薄膜之製備方法..................................................................30 2.6 電泳沉積法..........................................................................................32 2.6.1 電泳沉積之原理..............................................................................32 2.6.2 電泳沉積之應用及發展..................................................................34 2.6.3 電泳沉積方式..................................................................................34 2.6.4 懸浮液種類......................................................................................36 2.6.5 黏結劑與分散劑的添加對電泳沉積之影響..................................37 2.6.6 碘與有機溶劑之反應機制..............................................................38 第三章 實驗方法與步驟..........................................................................42 3.1 實驗方法.............................................................................................42 3.2 儀器設備.............................................................................................44 3.3 實驗藥品.............................................................................................44 3.4 電池元件的製備.................................................................................45 3.4.1 製備SDC電解質與SSC陰極粉末...............................................45 3.4.2配置電泳懸浮液...............................................................................48 3.4.3製備陽極基材(NiO. SDC) ...............................................................49 3.4.4製備SDC電解質層.........................................................................50 3.4.5調製陰極網印用膠...........................................................................51 3.4.6 製備陰極電極..................................................................................52 3.4.7 製備Ag網電流收集器...................................................................52 3.4.8 連接Au 導線..................................................................................52 3.4.9陽極(NiO. SDC)之還原....................................................................53 3.5 SDC powder之粒徑分析...................................................................53 3.6燃料電池之特性鑑定與分析..............................................................53 3.7 燃料電池之測試.................................................................................54 第四章 結果與討論..................................................................................55 4.1電解質粉末之性質分析......................................................................55 4.1.1 熱差/示差熱分析儀(DTA/TGA)...............................................55 4.1.2 愛克斯光繞射分析(XRD).........................................................56 4.1.3 粒徑分析.........................................................................................57 4.2 SSC陰極粉末之性質分析..................................................................60 4.2.1 愛克斯光繞射分析(XRD).........................................................60 4.2.2 SEM與EDS分析............................................................................61 4.3 電泳參數對電泳沉積之關係.............................................................63 4.3.1 碘濃度對電泳沉積的影響..............................................................63 4.3.1.1 碘濃度對電泳溶液導電度的影響...............................................63 4.3.1.2 碘濃度對電泳沉積量的影響.......................................................65 4.3.2 電壓對電泳沉積之影響..................................................................67 4.3.3 SDC粒徑大小對電泳沉積之影響..................................................72 4.3.4 SDC 濃度對電泳沉積之影響.........................................................75 4.3.5時間對電泳沉積之影響..................................................................81 4.4 燃料電池之電性量測........................................................................84 4.4.1 交流阻抗測試.................................................................................84 4.4.2 電功密度之測量.............................................................................88 4.4.2.1沉積電壓與電功密度之關係.......................................................92 4.4.2.2 電解質粒徑與電功密度之關係..................................................93 4.4.2.3 懸浮液電解質濃度與電功密度之關係......................................95 4.4.2.4 電泳沉積時間與電功密度之關係..............................................96 第五章 結論.............................................................................................99 參考文獻.................................................................................................101 附錄 A. ..................................................................................................106 附錄 B. ..................................................................................................110

    Appleby, A.J. and Foulkes , F.R. , Fuel Cell Handbook 7th ed, p. 1-8.

    Borner, A., Herbig, R., “EAS Measurement for Electrophoretic Deposition of Ceramic Materials” , Colloids and Surfaces A: Physicochemical and Engineering Aspects , v. 159 , pp. 439–447 (1999)

    Choy, J.H., Han, Y.S., Kim, J.T., Kim, Y.H., “ Citrate route to ultra-fine
    barium polytitanates with microwave dielectric properties” , Journal of the Electrochemical Society , v. 5 , pp. 57-63 (1995)

    Chen, F., Liu, M., “Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM±YSZ substrates using an electrophoretic deposition (EPD) process” , Journal of the European Ceramic Society , v. 21 , pp. 127±134 (2001)

    Hibino, T., Ushiki , K., and Kuwahara , Y., “New concept for simplifying SOFC system” , Solid State Ionics , v. 91(1-2) , pp. 69-74 (1996)

    Hibino, T., Kuwahara , Y., and Wang, S., “Effect of electrode and electrolyte modification on the performance of one-chamber solid oxide fuel cell” , Journal of the Electrochemical Society , v. 146(8) , pp. 2821-2826 (1999)

    Hrovat, M., Holc, J., Samardžija, Z., “The influence of firing temperature on gauge fators and the electrical and microstructural characteristics of thick-film resistors” , Journal Of Materials Science Letters , v. 20 , pp. 701-705 (2001)

    Haile, S.M., “Fuel cell materials and components” , Acta Materialia , v. 51(19) , pp. 5981-6000 (2003)

    Inoue, T., Setoguchi, T., Eguchi, K., Arai, H., “Study of a solid oxide fuel cell with a ceria-based solid electrolyte” , Solid State Ionics , v. 35(3-4) , pp. 285-291 (1989)

    Inaba, H., Tagawa, H., “Review ceria-based solid electrolytes” , Solid State Ionics , v. 83 , pp. 1-16 (1996)

    Ishihara, T., Akbay, T., Furutani, H., Takita, Y., “Improved oxide ion conductivity of Co doped La0.8 Sr0.2 Ga0.8 Mg 0.2O3 perovskite type oxide” , Solid State Ionics , v. 113-115 , pp. 585-591 (1998)

    Jia, L., Lü, Z., Huang, X., Liu, Z., Chen, K., Sha, X., Li, G., Su, W., “Preparation of YSZ film by EPD and its application in SOFCs” , Journal of Alloys and Compounds , v. 424(1-2) , pp. 299-303 (2006)

    Koura, N., Tsukamoto, T., Hotta, T., “Preparation of various oxide films by an electrophoretic deposition method , a study of the mechanism” ,Japanese Journal of Applied Physics, Part 1 , Regular Papers & Short Notes & Review Papers , v. 34(3) , pp. 1643-1647 (1995)

    Koichi, E., “Ceramic materials containing rare earth oxides for solid oxide fuel cell” , Journal of Alloys and Compounds , v. 20 , pp. 486-491 (1997)

    Kamada, K., Maehara, K., Mukai, M., Ida, S., Matsumoto, Y., “Fabrication of metal oxide-diamond composite films by electrophoretic deposition and anodic dissolution” , Journal of the Electrochemical Society , v. 18 , pp. 2826-2831 (2003)

    Li, J.G., Ikegami, T., Mori, T., “Low temperature processing of dense samarium-doped CeO2 ceramics: Sintering and grain growth behaviors” , Acta Materialia , v. 52 , pp. 2221-2228 (2004)

    Liu, M., Lü, Z., Wei, B., Zhu, R., Huang, X., Chen, K., Ai, G., Su, W., “Anode-supported micro-SOFC stacks operated under single-chamber conditions” , Journal of the Electrochemical Society , v. 154 (6) , pp. 588-592 (2007)

    Mogensen, M., Sammes, N.M., Tompsett, G.A., “Physical, chemical and electrochemical properties of pure and doped ceria” , Solid State Ionics , v. 129 , pp. 63-94 (2000)

    Ma, J., Zhang, T.S., Kong, L.B., Hing, P., Chan, S.H., “Ce0.8Gd0.2O2−δ ceramics derived from commercial submicron-sized CeO2 and Gd2O3 powders for use as electrolytes in solid oxide fuel cells” , Journal of Power Sources , v. 132 , pp. 71–76 (2004)

    Negishi, H., Sakai, N., Yamaji, K., Horita, T. and Yokokawa, Y., “Application of electrophoretic deposition technique to solid oxide fuel cells” , Journal of the Electrochemical Society , v.147 , pp. 1682 (2000)

    Peng, C., Zhang, Y., Cheng, Z. W., Cheng, X. and Meng, J., “Nitrate-citrate combustion synthesis and properties of Ce1-xSmxO2-x/2 solid solutions” , Journal of Materials Science: Materials in Electronics , v. 13 , pp. 757-762 (2002)

    Sarkar, P., Haung, X., Patrick, S., “Electrophoretic deposition and its use to synthesise YSZ/Al2O3 micro-laminate ceramic/ceramic composites” , Ceramic Engineering and Science Proceedings , v. 14 , pp. 707-716(1993)

    Sarkar, P., Patrick S. N., “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics” , Journal of the Electrochemical Society , v. 79 , pp. 1987-2002 (1996)

    Stephen, J. S., John A. K., “Oxygen ion conductors” , Materials Today , v6. n3 , pp. 30-37 (2003)

    Suzuki , T., Jasinski , p., Petrovsky , V., Anderson , Harlan U., Dogan , F., “Performance of a Porous Electrolyte in Single-Chamber SOFCs” , Journal of The Electrochemical Society , v. 152 , 3 , pp. 527~531 (2005)

    Tributsch, H., “Challenges for (photo)electrocatalysis research”, Catalysis Today , v. 39(3) , pp. 177-186 (1997)

    Thangadurai, V., Weppner, W., “Ce0.8Sm0.2O1.9, characterization of
    electronic charge carriers and application in limiting current oxygen sensors” , Electrochimica Acta , v. 49 , pp. 1577-1585 (2004)

    Uchikoshi, T., Ozawa, K., Benjamin D., Sakka, Y., “Dense , bubble-free, ceramic deposits from aqueous suspensions by electrophoretic deposition” , Journal of Materials Research , v. 16 , pp. 321-324 (2001)

    Van Der Biest, O.O., Vandeperre, L.J., “Electrophoretic deposition of material” , Annu. Rev. Mater. Sci., v. 29 , pp. 327-352 (1999)

    Wang, D.Y.,Nowick, A. S., “Cathodic and anodic polarization phenomena at platinum electrodes with doped CeO2 as electrolyte” , Journal of the Electrochemical Society , v. 126 , pp. 1155-1164 (1979)

    Winkler , Wolfgang , Lorenz , Hagen , “The design of stationary and mobile solid oxide fuel cell-gas turbine systems” , Journal of Power Sources, v. 105(2) , pp. 222-227 (2002)

    Yamashita, K., Ramanujachary, K.V., Greenblatt, M., “Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics” , Solid State Ionics , v. 81 (1-2) , pp. 53-60

    Yahiro , Hidenori , Baba , Yoshinobu , Eguchi , Koichi , Arai , Hiromichi , “High temperature fuel cell with ceria-yttria solid electrolyte” , Journal of the Electrochemical Society , v. 135 , pp. 2077-2080 (1988)

    Yahirob , Hidenorib , Eguchib , Koichib , Araib , Hiromichi , “Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell” , Solid State Ionicsb, v. 36(1-2) , pp. 71-75 (1989)

    Yinb, Y., Zhub, W., Xiab, C., Meng, G., “Gel-cast NiO–SDC composites as anodes for solid oxide fuel cells” , Journal of Power Sources, v. 132 , pp. 36–41 (2004)

    Zhitomirsky, I. b., Petric, A. b., “Electrophoretic deposition of electrolyte materials for solid oxide fuel cell “, Journal of materials science , v. 39 , pp. 825-831 (2004)

    Zhu, B., Liu, X., Schober, T., “Novel hybrid conductors based on dopedceria and BCY20 for ITSOFC applications” , Electrochemistry Communications , v. 6 , pp. 378-383 (2004)

    Zhao, F., Virkar, A. V., “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters” , Journal of Power Sources, v. 141 , pp. 79–95 (2005)

    Zhu , Wei , Xia , Changrong , Fan , Jue , Peng , Ranran , Meng , Guangyao , “Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells” , Journal of Power Sources , v. 160 , pp. 897–902 (2006)

    黃琇芳, 電泳塗裝技術, 化工技術, 10﹝4﹞49-52 (1986)

    黃鼎翰, 「以低溫水熱法合成奈米級釤及鉍摻雜鈰系固態氧化物燃
    料電池電解質與其電化學性質之研究」,碩士論文,國立台灣科技大學,台北 (2004)。

    楊帝威, 「以電泳沉積法製備YSZ 薄膜之研究」,碩士論文,國立成功大學,台南 (2006)。

    金祖永, 「鑭鈣鈷鐵氧化物作為SOFC陰極之氧還原反應觸媒作用」,碩士論文,國立台灣科技大學,台北 (2007)。

    無法下載圖示 全文公開日期 2014/02/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE