簡易檢索 / 詳目顯示

研究生: 陳志豪
Chih-Hao Chen
論文名稱: 學習型模型預測控制於線性定位平台之精密運動控制研究
Precision Motion Control of a Linear Positioning Stage Using Learning-Type Model Predictive Control
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 陳亮光
Liang-kuang Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 76
中文關鍵詞: 精密追跡控制反覆學習控制模型預測控制學習型模型預測控制PD型學習律
外文關鍵詞: Precision motion control, learning control, model predictive control, L-MPC, PD type learning control
相關次數: 點閱:189下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 學習型模型預測控制(Learning-type Model Predictive Control, L-MPC)為一種將反覆學習控制用於更新模型預測控制器的參考輸入,再藉由模型預測控制器運算最佳控制量的控制演算法。此控制法具備最佳控制演算法概念以及限制處理之優點,同時離線批次更新學習後的參考輸入進一步獲得良好控制效能。現有文獻中所提的學習型模型預測控制主要是以P型學習律更新參考輸入,然而P型學習律在多次學習後易受高頻雜訊影響其學習穩定度,造成誤差發散。因此本文提出以PD型學習律設計學習模型預測控制器改善此問題,並首度應用此控制方法於線性伺服平台之精密運動控制。本研究探討此控制法於多種運動軌跡之追跡效能並比較上述兩種反覆學習控制律在追跡控制上所造成的差異;實驗結果證實本文所提出之學習型模型預測控制能有效改善伺服平台的定位效能,尤其加入輸入限制處理後更能降低在運動軌跡高頻轉角處所產生的追跡誤差。


    Learning-type Model Predictive Control(L-MPC) is a type of model predictive control (MPC) approach that iteratively updates the setting input in the MPC control system by using so called learning control algorithms. This control algorithm reserves the advantages of MPC in calculating the optimal control moves at all sample steps and handling system constraints, and particularly obtains the optimal reference batch command for further improved control performance. The existing literature shows that P-type learning control law is widely adopted to the L-MPC control systems. However, the stability is easily influenced by high frequency noises and the learning performance may be deteriorated with divergent error. This study proposes a PD-type L-MPC control law to tackle this problem because of the better stability offered by the PD learning control. Unlike the slow dynamic system applications presented in the previous work, the proposed L-MPC control law is applied to a linear servo stage for precision motion control. Comparative experiments for tracking dynamic motion profiles are conducted to investigate the effects of using two different learning control laws. The results show that the proposed PD-type L-MPC achieves better tracking performance than P-type L-MPC, and can effectively reduce the error magnitude occurred at the abrupt corner of a challenging motion profile.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1.1 前言與研究動機 1 1.2 反覆學習控制概論 3 1.3 模型預測控制器概論 5 1.4 實驗架構與貢獻 7 第二章 控制理論與控制器設計 2.1 模型預測控制基本概念與原理 8 2.1.1 預測區間與控制區間之概念 11 2.1.2 成本函數 11 2.1.3 二次規劃 12 2.1.4 輸入與輸出限制條件 13 2.2 反覆學習控制基本概念與原理 17 2.2.1 反覆學習控制的基本假設 17 2.2.2 反覆學習控制的形式 18 2.3 學習型模型預測控制設計 19 2.3.1 模型預測控制器建立 20 2.3.2 狀態估測器設計 24 2.3.3 學習型模型預測控制器設計 26 第三章 模型推導與系統架設 3.1 模型推導 27 3.2 系統架設 29 3.2.1 精密運動平台 29 3.2.2 馬達與驅動器 30 3.2.3 實驗硬體 31 第四章 實驗結果與討論 4.1 系統識別與模型驗證 32 4.2 實驗結果討論 35 4.2.1 追跡實驗結果 35 4.2.2 P型、PD型學習律實驗結果 53 4.2.3 加入限制後實驗結果 60 4.2.4 比較單用ILC與L-MPC追跡實驗結果 60 第五章 結論與未來方向 5.1 結論 64 5.2 未來研究方向與建議 65 參考文獻 66

    參考文獻
    [1] C. T. Lin and Y. C. Yu, “Visual servoing for mask alignment in photolithogra-phy positioning system,” Proceedings of the 2005 IEEE International Confe-rence on Mechatronics, Taipei, Taiwan, July 10-12, 2005, pp. 762-767.
    [2] C. S. Lin, Y. L. Lay, C. C. Huan, H. C. Chang and T. S. Hwang, “An im-age-based LCD positioning system utilizing the modified FHT method,” Op-tik-International Journal for Light and Electron Optics, Vol. 114, No. 4, pp. 151-159, 2003.
    [3] M. van de Wal , G. van Baars , F. Sperling and O. Bosgra “Multivariable feedback control design for high-precision wafer stage motion,” Con-trol Engineering Practice, Vol. 10, pp. 739-755, 2002.
    [4] C. S. Lin and L. W. Lue, “An image system for fast positioning and accuracy inspection of ball grid array boards,” Microelectronics Reliability, Vol. 41, No. 1, pp. 119-128, 2001.
    [5] J. Mahon, “Automatic 3-D inspection of solder paste on surface mount printed circuit boards,” Journal of Materials Processing Technology, Vol. 26, No. 2, pp. 245-256, 1991.
    [6] L. Wang, L. Ren, J. K. Mills and W. L. Cleghorn, “Automatic 3d joining in mi-croassembly,” Proceedings of the 2007 International Conference on Information Acquisition, Seogwiposi, Korea, July 8-11, 2007pp. 292-297.
    [7] M. H. Wu, C. S. Fuh and H. Y. Chen, “Defect inspection and analysis of color filter panel,” Image and Recognition, Vol. 6, No. 2, pp. 74-90, 2000.
    [8] S. E. Hodges and R. J. Richards, “Fast multi-resolution image processing for PCB manufacture,” IEE Colloquium on Multi-resolution Modeling and Analysis in Image Processing and Computer Vision, pp. 1-8, 1995.
    [9] “光罩對位,” http://opto-equipment.etrading.com.tw/positioning.htm
    [10] S. Mishra, J. Coaplen, and M. Tomizuka, “Precision positioning of wafer scan-ners; segmented iterative learning control for nonrepetitive disturbances,” IEEE Control Systems Magazine., Vol. 27, No. 4, pp. 20-25, 2007.
    [11] “電子封裝製程流程圖,” http://www.tanaka-bondingwire.com/english/
    bondingLab01_03_Eng.html
    [12] Heertjes, M. F., & van de Molengraft, R. M. J. G. “Set-point variation inlearning schemes with applications to wafer scanners,” Control Engineering Practice, Vol. 17,No. 3,pp. 345-356, 2009.
    [13] “打線技術(Wire bonding)示意圖,” http://www.tanaka-bondingwire.com/
    english/bondingLab01_01_Eng.html
    [14] L. Xu and B. Yao, “Adaptive robust precision motion control of linear motors with negligible electrical dynamics: Theory and experiments,” IEEE/ASME Transactions on Mechatronics, Vol. 6, No. 4, pp. 444-452, 2001.
    [15] K. K. Tan, H. F. Dou, Y. Q. Chen and T. H. Lee, “High precision linear motor control via relay-tuning and iterative learning based on zero-phase filtering,” IEEE Transactions on Control Systems Technology, Vol. 9, No. 2, pp. 244-253, 2001.
    [16] H. S. Lee and M. Tomizuka, “Robust motion controller design for high-accuracy positioning systems,” IEEE Transactions on Industrial Electronics., Vol. 43, No.1, pp. 48-55, 1996.
    [17] C. M. Liaw, R. Y. Shue, H. C. Chen and S. C. Chen, “Development of a linear brushless dc motor drive with robust position control,” IEE Proceedings-Electric Power Applications, Vol. 148, No. 2, pp. 111-118, 2001.
    [18] N. C. Shieh and P. C. Tung, “Robust output tracking control of a linear DC brushless motor for transportation in manufacturing system,” IEE Proceed-ings-Electric Power Applications, Vol. 148, No. 2, pp. 119-124, 2001.
    [19] Z. Z. Liu, F. L. Luo, and M. A. Rahman, “Robust and precision motion control system of linear-motor direct drive for high-speed x-y table positioning me-chanism,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp.1357-1363, 2005.
    [20] D. D. Roover and O. Bosgra, “Synthesis of robust multivariable iterative learn-ing controllers with application to a wafer stage motion system,” International Journal of Control, Vol. 73, No. 10, pp. 968-979, 2000.
    [21] C. L. van Oosten, O. H. Bosgra and B. G. Dijkstra, “Reducing residual vibra-tions through iterative learning control with application to a wafer stage,” Pro-ceedings American Control Conference, Boston, MA, June 30-July 2, 2004, Vol. 6, pp. 5150-5155, 2004.
    [22] J. Wu, Z. Xiong, K. M. Lee and H. Ding, “High-acceleration precision point-to-point motion control with look-ahead properties,” IEEE Transactions Industrial Electronics., Vol. 58, No. 9, pp. 4343-4352, 2011.
    [23] S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” Journal of Robotic Systems, Vol. 1, pp. 123-140, 1984.
    [24] K. K. Tan, S. Zhao and J.X. Xu, “Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach,” IET Control Theory and Applications, Vol. 1, pp. 90-96, 2007.
    [25] M. Uchiyama, “Formulation of high-speed motion pattern of a mechanical arm by trial,” Transactions on the Society of Instrument and Control Engineers, Vol. 14, No. 1, pp. 706-712, 1978.
    [26] S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots by learning,” Journal of Robotic Systems, Vol. 1, pp. 123-140, 1984.
    [27] Y. Q. Ye and D. W. Wang “Learning more frequency components using P-type ILC with negative learning gain,” IEEE Transactions on Industrial Electronics, Vol. 53, pp. 712-716, 2006.
    [28] H. S. Lee and Z. Bien, “Study on Robustness of Iterative Learning Control with Non-Zero Initial Error,” International Journal of Control, Vol. 64, No. 3, pp. 345-359, 1996.
    [29] Y. Q. Chen and K. L. Moore, “An optimal design of PD-type iterative learning control with monotonic convergence,” Proceedings of IEEE International Symposium on Intelligent Control, Vancouver, Canada, Oct. 5-6, 2002, pp. 55-60.
    [30] J. X. Xu, “Analysis of iterative learning control for a class of nonlinear dis-crete-time systems,” Automatica, Vo1. 33, No. 10, pp. 1905-1907, 1997.
    [31] 溫孝元, “離散型反覆式學習控制器之設計與實現,” 華梵大學機電工程研究所碩士論文, 2000.
    [32] 顏元習, “離散式反覆學習系統的學習性能之改良,” 華梵大學機電工程研究所碩士論文, 2002.
    [33] Z. Bien and J. X. Xu, “Iterative learning control analysis, design, integration and applications,” Kluwer Academic Publishers, 1998.
    [34] K. H. Park and Z. Bien, “A generalized iterative learning controller against ini-tial state error,” International Journal of Control, Vol. 73, No. 10, pp. 871-881, 2000.
    [35] M. Stephens, C. Manzie and M. Good, “Model predictive control for reference tracking on an industrial machine tool servo drive,” IEEE Transactions on In-dustrial Informatics, Vol. 9, No. 2, pp. 808-816, 2013.
    [36] R. Cao and K. Low, “A repetitive model predictive control approach for preci-sion tracking of a linear motion system,” IEEE Transactions on Industrial Elec-tronics, Vol. 56, No. 6, pp. 1955-1962, 2009.
    [37] C. Y. Lin and Y. C. Liu, “Precision Tracking Control and Constraint Handling of Mechatronic Servo Systems Using Model Predictive Control,” IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 4, pp. 593-605, 2011.
    [38] D. Luenberger (1969). Optimization by vector space methods. Wiley: New York.
    [39] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert. “Constrained model predictive control: stability and optimality,” Automatica, Vol. 36, No. 6, pp. 789-814, 2000.
    [40] L. V. D. Broeck, M. Diehl and J. Servers, “Experimental validation of time op-timal MPC on a linear drive system,” Proceedings of the 11th IEEE International Workshop on Advanced Motion Control, Nagaoka, Japan, Mar. 21-24, 2010, pp. 355-360.
    [41] M. K. Samal, M. Garratt, H. Pota and H. T. Sangani, “Model predictive attitude control of vario unmanned helicopter,” Proceedings of the 37th Annual Confe-rence on IEEE Industrial Electronics Society, Melbourne, VIC, Nov. 7-10, 2011, pp. 622-627.
    [42] I. Maurovic, M. Baotic and I. Petrovic, “Explicit Model Predictive Control for Trajectory Tracking with Mobile Robots,” Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, July 3-7, 2011, pp. 712-717.
    [43] A. Bemporad, M. Morari, V. Dua and E. N. Pistikopoulos,“ The explicit linear quadratic regulator for constrained systems,” Automatica, Vol. 38, No. 1, pp. 3-20, 2002.
    [44] A. G. Beccuti, S. Mariethoz, S. Cliquennois, S. Wang and M. Morari,“Explicit model predictive control of DC-DC switched-mode power supplies with ex-tended Kalman filtering,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 1864-1874, 2009.
    [45] K. S. Lee, I. Chin and H. Lee, “Model predictive control technique combined with iterative learning for batch processes,” American Institute of Chemical En-gineers Journal, Vol. 45, pp. 2175-2187, 1999.
    [46] K. S. Lee and J. H. Lee, “Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables,” Journal of Process Control, Vol. 13, No. 7, pp. 607-621, 2003.
    [47] Y. Wang, E. Dassau and F. J. Doyle, ‘‘Closed-loop control of artificial pancrea-tic β-cell in type 1 diabetes mellitus using model predictive iterative learning-control,’’ IEEE Transactions on Biomedical Engineering, Vol. 57, No. 2, pp. 211-6219, 2010.
    [48] Y. Wang, F.J Doyle, “Indirect iterative learning control: Application on artificial pancreatic β-cell,” IEEE Control and Decision Conference, Guilin, China, June 17-19, 2009, pp. 1728-1733.
    [49] R. Fletcher, Practical methods of optimization, Hoboken, New Jersey: John Wiley, 1987.
    [50] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1994.
    [51] C. Roos, T. Terlaky, and J. P. Vial, Theory and algorithms for linear optimization: an interior point approach, Hoboken, New Jersey: John Wiley, 1997.
    [52] S. J. Wright, Primal-dual interior-point methods, Philadelphia, Pennsylvania: Society for Industrial and Applied Mathematics, 1997.
    [53] C. Hildreth, “A quadratic programming procedure,” Naval Research Logistics Quarterly, Vol. 4, No. 1, pp. 79-85, 1957.
    [54] L. Wang, Model predictive control system design and implementation using MATLAB, London, United Kingdom: Springer-Verlag, 2009.
    [55] J.M.Maciejowski. Predictive control with constraints, Prentice-Hall, 2002.
    [56] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback control of dynamic systems, Boston, Massachusetts: Addison-Wesley, 1994.
    [57] R. E. Kalman, “A New approach to linear filtering and prediction problems,” Transactions ASME, Journal of Basic Engineering, Vol. 82, pp. 35-45, 1960.
    [58] 劉燕忠, “模型預測控制於精密機電伺服系統之應用,” 國立台灣科技大學機械工程研究所碩士論文, 2010.
    [59] 黃一桓, “模型預測控制於撓性樑主動抑振控制研究之實驗探討,” 國立台灣科技大學機械工程研究所碩士論文, 2012.
    [60] L. Ljung, System Identification Toolbox for Use with MATLAB, The Math Works, 2007.
    [61] S.Kaitwanidvilai, M. Parnichkun, “Genetic algorithm based fixed-structure ro-bust H∞ loop shaping control of a pneumatic servo system,” Journal of Robotics and Mechatronics, Vol. 16, No. 4, pp. 362-373, 2004.
    [62] Z. Jamaludin , H. Van Brussel and J. Swevers, “Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 10, pp. 3848-3853, 2009.
    [63] A. A. El-Badawy and A. H. Nayfeh, “Control of a directly excited structural dynamic model of an F-15 tail section,” Journal of the Franklin Institute, Vol. 338, No. 2-3, pp. 133-147, 2001.
    [64] P. Arcara, S. Bittanti and M. Lovera, “Active control of vibrations in helicopters by periodic optimal control,” Proceedings of the 1997 IEEE Control Applica-tions, Hartford, CT, Oct. 5-7, 1997, pp. 730-735.

    QR CODE