簡易檢索 / 詳目顯示

研究生: 黃振斌
Jenn-Bin Huang
論文名稱: 以有機金屬氣相磊晶法製備氮化鎵/氮化銦鎵發光二極體之研究-圖案化基材、緩衝層及反平行電域結構對元件特性的效應
Gallium Nitride/Indium Gallium Nitride Light-Emitting Diode Fabricated by MOCVD-Effects of Patterned Sapphire Substrate, Buffer Layer, and Antiparallel Polar Domains on Device Properties
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 周振嘉
Chen-Chia Chou
周賢鎧
Shyankay Jou
賴韋志
Wei-Chih Lai
陳乃權
Nai-Chuan Chen
吳伯仁
Bor-Jen Wu
簡奉任
Fen-Ren Chien
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 氮化鎵發光二極體有機金屬氣相沈積緩衝層氧化鋅原料供給V/III比圖案型藍寶石基板極性抗靜電
外文關鍵詞: gallium nitride (GaN), light-emitting diode (LED), metalorganic chemical vapor deposition (MOCVD), buffer layer, zinc oxide (ZnO), V/III precursor feed ratio, pattern sapphire substrate (PSS), polarity, electrostatic discharge (ESD)
相關次數: 點閱:276下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用有機金屬氣相沈積法(metalorganic chemical vapor deposition, MOCVD)製備氮化鎵/氮化銦鎵發光二極體,分別利用添加ZnO當作緩衝層、改變GaN在高溫成長初期時的原料供給V/III比、以及在p-GaN層導入反平行電域結構等方法,以改善材料品質、降低缺陷及提升發光二極體的光電特性。

    本研究發現,(i)在sapphire上先成長ZnO緩衝層,再成長氮化鎵系藍光LED,可得到缺陷較低的GaN薄膜及光電特性較佳的LED。(ii)藉由改變GaN高溫成長初期階段的原料供給V/III比,可促使c-面GaN在圖案化基材(PSS)的圖案(非c-面sapphire)及圖案間距(c-面sapphire)做選擇性成長。此時低原料供給V/III比的成長環境可成功在PSS上成長平坦且高品質的GaN薄膜,其HRXRD在(002)面及(102)面量測繞射峰的FWHM分別為295.4 arcsec及309.7 arcsec。(iii)以應力累積的方式形成具有Ga-及N-極性反向並排共存區(antiparallel Ga- and N-polar coexistent domains)的p型GaN層,可將LED的人體模式抗靜電(electrostatic discharge, ESD)能力提升至4000 V。


    In this study, we fabricated gallium nitride/indium gallium nitride light-emitting diode (LED) by metalorganic chemical vapor deposition (MOCVD) technique. The effects of introducing a ZnO buffer layer prior to the low-temperature GaN buffer layer growth, varying V/III precursor feed ratio during the high-temperature GaN initial growth stage, and deliberating an antiparalled polar domains structure in the p-GaN layer region were explored so as to reduce film dislocations, improve epitaxy quality and LED device optoelectronic properties.

    First of all, GaN-based blue LEDs fabricated on sapphire substrates with a ZnO buffer layer exhibited a lower threading dislocation density in the epitaxially grown GaN layers and an improved device performance. Adjusting a lower V/III precursor feed ratio of 829 during the high-temperature GaN initial growth stage favored selective-area growth on patterned sapphire substrates, leading a successful conversion of three-dimention to two-dimention GaN epitaxial growth. Finally, we found for the first time that the coexistence of antiparallel Ga-polar and N-polar domains in the p-type GaN layer region improves the electrostatic discharge (ESD) endurance ability of the InGaN blue light-emitting diodes, by increasing the negative HBM-ESD 4000 V pass yield to greater than 90%. The inversion of Ga- to N-polarity in this region can be controlled by the extent of stress accumulated in the underlying layers.

    中文摘要 I Abstract II 誌謝 IV 目 錄 V 圖索引 VIII 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 3 第二章 文獻回顧與研究背景 7 2.1 氮化鎵系LED發展史及文獻回顧 7 2.1.1 III-V族氮化物物理、化學特性及其結晶結構 7 2.1.2 氮化鎵系LED發展史 7 2.1.3 藍光LED在白光照明上的應用 9 2.2 氮化鎵系LED的製作 15 2.2.1 有機金屬化學氣相沈積法 15 2.2.2 GaN與藍寶石晶格不匹配度 16 2.3 降低磊晶缺陷的方法 23 2.3.1 緩衝層的條件與改善 23 2.3.2 階段成長法 24 2.3.3 磊晶側向成長 25 2.3.4 使用圖案型藍寶石基板 26 2.4 提升抗靜電能力的方法 30 2.4.1 LED元件製作的改善與設計 30 2.4.2 LED磊晶條件的改善與磊晶結構設計 30 第三章 實驗材料及設備 34 3.1 實驗材料 34 3.2 實驗裝置 39 3.3 分析方法及儀器介紹 43 第四章 在具有ZnO緩衝層的藍寶石基板成長氮化鎵系發光二極體 45 4.1 實驗條件 45 4.2 結果與討論 47 4.3 結論 51 第五章GaN薄膜在圖案型藍寶石基板的成長 59 5.1 實驗條件 59 5.2 結果與討論 60 5.3 結論 65 第六章 以Ga-及N-極性並排共存區的p型GaN層來提升LED的抗靜電能力 76 6.1 實驗條件 76 6.2 結果與討論 77 6.3 結論 80 第七章 總結論 89 參考文獻 91 作者簡介 105

    [1] H. P. Maruska and J. J. Tietjen, "The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN," Applied Physics Letters, vol. 15, pp. 327-329 (1969)
    [2] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, "Electroluminescence in GaN," Journal of Luminescence, vol. 4, pp. 63-66 (1971)
    [3] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, "GaN Blue Light-Emitting Diodes," Journal of Luminescence, vol. 5, pp. 84-86 (1972)
    [4] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, pp. L2112-2114 (1989)
    [5] S. Nakamura, N. Iwasa, and M. Senoh, "Method of Manufacturing P-Type Compound Semiconductor," U.S. Pat., 5,306,662, (1994)
    [6] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures," Japanese Journal of Applied Physics, Part 2: Letters, vol. 34, pp. L797-L799 (1995)
    [7] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, "High-Power InGaN Single-Quantum-Well-Structure Blue and Violet Light-Emitting Diodes," Applied Physics Letters, vol. 67, pp. 1868-1870 (1995)
    [8] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well Structure Laser Diodes," Applied Physics Letters, vol. 69, pp. 4056-4058 (1996)
    [9] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, "Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes with a Long Lifetime," Applied Physics Letters, vol. 70, pp. 868-870 (1997)
    [10] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, "AlGaN/AlN/GaN High-Power Microwave HEMT," IEEE Electron Device Letters, vol. 22, pp. 457-459 (2001)
    [11] J. Y. Tsao, "Solid-State Lighting: Lamps, Chips, and Materials for Tomorrow," IEEE Circuits and Devices Magazine, vol. 20, pp. 28-37 (2004)
    [12] J. L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, and O. Briot, "Transmission Electron Microscopy Structural Characterization of GaN Layers Grown on (0001) Sapphire," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. B50, pp. 61-71 (1997)
    [13] S. Yoshida, S. Misawa, and S. Gonda, "Improvements on the Electrical and Luminescent Properties of Reactive Molecular Beam Epitaxially Grown GaN Films by Using AlN-Coated Sapphire Substrates," Applied Physics Letters, vol. 42, pp. 427-429 (1983)
    [14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic Vapor Phase Epitaxial Growth of a High Quality GaN Film Using an AlN Buffer Layer," Applied Physics Letters, vol. 48, pp. 353-355 (1986)
    [15] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Japanese Journal of Applied Physics, Part 2: Letters, vol. 30, pp. L1705-L1707 (1991)
    [16] S. Nishino, J. A. Powell, and H. A. Will, "Production of Large-Area Single-Crystal Wafers of Cubic SiC for Semiconductor Devices," Applied Physics Letters, vol. 42, pp. 460-462 (1983)
    [17] Veeco, "February 2011 Investor Slides," 2011
    [18] S. Strite and H. Morkoc, "GaN, AlN, and InN: A Review," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, pp. 1237-1266 (1992)
    [19] P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, "Crystallography of Epitaxial Growth of Wurtzite-Type Thin Films on Sapphire Substrates," Journal of Applied Physics, vol. 75, pp. 4515-4519 (1994)
    [20] T. Lei, K. F. Ludwig, Jr., and T. D. Moustakas, "Heteroepitaxy, Polymorphism, and Faulting in GaN Thin Films on Silicon and Sapphire Substrates," Journal of Applied Physics, vol. 74, pp. 4430-4437 (1993)
    [21] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, "High Dislocation Densities in High Efficiency GaN-Based Light-Emitting Diodes," Applied Physics Letters, vol. 66, pp. 1249-1251 (1995)
    [22] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P. DenBaars, and J. S. Speck, "Role of Threading Dislocation Structure on the X-ray Diffraction Peak Widths in Epitaxial GaN Films," Applied Physics Letters, vol. 68, pp. 643-645 (1996)
    [23] F. Brunner, V. Hoffmann, A. Knauer, E. Steimetz, T. Schenk, J. T. Zettler, and M. Weyers, "Growth Optimization During III-Nitride Multiwafer MOVPE Using Real-Time Curvature, Reflectance and True Temperature Measurements," Journal of Crystal Growth, vol. 298, pp. 202-206 (2007)
    [24] F. Brunner, A. Knauer, T. Schenk, M. Weyers, and J. T. Zettler, "Quantitative Analysis of in situ Wafer Bowing Measurements for III-Nitride Growth on Sapphire," Journal of Crystal Growth, vol. 310, pp. 2432-2438 (2008)
    [25] S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim, and H.-K. Cho, "Two-Step Growth of High Quality GaN Using V/III Ratio Variation in the Initial Growth Stage," Journal of Crystal Growth, vol. 262, pp. 7-13 (2004)
    [26] H. Fujikura, K. Iizuka, and S. Tanaka, "Realization of Low Dislocation GaN/Sapphire Wafers by 3-Step Metalorganic Vapor Phase Epitaxial Growth with Island Induced Dislocation Control," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 42, pp. 2767-2772 (2003)
    [27] S. Nitta, J. Yamamoto, Y. Koyama, Y. Ban, K. Wakao, and K. Takahashi, "Facet-Controlled Three-Step Growth of High-Guality GaN on Sapphire Substrates by Mass-Production-Type Metalorganic Vapor Phase Epitaxy," Journal of Crystal Growth, vol. 272, pp. 438-443 (2004)
    [28] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, "Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN," Japanese Journal of Applied Physics, Part 2: Letters, vol. 37, pp. L316-L318 (1998)
    [29] S. Haffouz, H. Lahrèche, P. Vennéguès, P. d. Mierry, B. Beaumont, F. Omnès, and P. Gibart, "The Effect of the Si/N Treatment of a Nitridated Sapphire Surface on the Growth Mode of GaN in Low-Pressure Metalorganic Vapor Phase Epitaxy," Applied Physics Letters, vol. 73, pp. 1278-1280 (1998)
    [30] S.-E. Park, S.-M. Lim, C.-R. Lee, C. S. Kim, and B. O, "Influence of SiN Buffer Layer in GaN Epilayers," Journal of Crystal Growth, vol. 249, pp. 487-491 (2003)
    [31] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, C. H. Kuo, J. M. Tsai, and C. C. Lin, "InGaN/GaN MQW Blue LEDs with GaN/SiN Double Buffer Layers," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 111, pp. 214-217 (2004)
    [32] I. Halidou, Z. Benzarti, T. Boufaden, B. El Jani, S. Juillaguet, and M. Ramonda, "Influence of Silane Flow on MOVPE Grown GaN on Sapphire Substrate by an in situ SiN Treatment," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 110, pp. 251-255 (2004)
    [33] C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and C. C. Lin, "Nitride-Based Blue LEDs with GaN/SiN Double Buffer Layers," Solid-State Electronics, vol. 47, pp. 2019-2022 (2003)
    [34] S. C. Wei, Y. K. Su, S. J. Chang, S.-M. Chen, and W.-L. Li, "Nitride-Based MQW LEDs with Multiple GaN-SiN Nucleation Layers," IEEE Transactions on Electron Devices, vol. 52, pp. 1104-1109 (2005)
    [35] C. W. Kuo, Y. K. Fu, C. H. Kuo, L. C. Chang, C. J. Tun, C. J. Pan, and G. C. Chi, "Dislocation Reduction in GaN with Double MgxNy/AlN Buffer Layer by Metal Organic Chemical Vapor Deposition," Journal of Crystal Growth, vol. 311, pp. 249-253 (2009)
    [36] L.-C. Chen, J.-B. Huang, P.-J. Cheng, and L.-S. Hong, "InGaN Blue Light-Emitting Diodes with ZnO Nucleation Layers Prepared by the Sol-Gel Method," Semiconductor Science and Technology, vol. 22, pp. 1178-1182 (2007)
    [37] A. Ougazzaden, D. J. Rogers, F. Hosseini Teherani, T. Moudakir, S. Gautier, T. Aggerstam, S. Ould Saad, J. Martin, Z. Djebbour, O. Durand, G. Garry, A. Lusson, D. McGrouther, and J. N. Chapman, "Growth of GaN by Metal Organic Vapor Phase Epitaxy on ZnO-Buffered c-Sapphire Substrates," Journal of Crystal Growth, vol. 310, pp. 944-947 (2008)
    [38] A. Sakai, H. Sunakawa, and A. Usui, "Defect Structure in Selectively Grown GaN Films with Low Threading Dislocation Density," Applied Physics Letters, vol. 71, pp. 2259-2261 (1997)
    [39] A. Sakai, H. Sunakawa, and A. Usui, "Transmission Electron Microscopy of Defects in GaN Films Formed by Epitaxial Lateral Overgrowth," Applied Physics Letters, vol. 73, pp. 481-483 (1998)
    [40] H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, "Microstructure of GaN Laterally Overgrown by Metalorganic Chemical Vapor Deposition," Applied Physics Letters, vol. 73, pp. 747-749 (1998)
    [41] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, "Fabrication and Characterization of Low Defect Density GaN Using Facet-Controlled Epitaxial Lateral Overgrowth (FACELO)," Journal of Crystal Growth, vol. 221, pp. 316-326 (2000)
    [42] Y. Honda, Y. Iyechika, T. Maeda, H. Miyake, and K. Hiramatsu, "Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth," Japanese Journal of Applied Physics, Part 2: Letters, vol. 40, pp. L309-L312 (2001)
    [43] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, "Air-Bridged Lateral Epitaxial Overgrowth of GaN Thin Films," Applied Physics Letters, vol. 76, pp. 3768-3770 (2000)
    [44] J.-H. Lee, J.-T. Oh, J.-S. Park, J.-W. Kim, Y.-C. Kim, J.-W. Lee, and H.-K. Cho, "Improvement of Luminous Intensity of InGaN Light Emitting Diodes Grown on Hemispherical Patterned Sapphire," physica status solidi (c), vol. 3, pp. 2169-2173 (2006)
    [45] J.-C. Song, S.-H. Lee, I.-H. Lee, K.-W. Seol, S. Kannappan, and C.-R. Lee, "Characteristics Comparison between GaN Epilayers Grown on Patterned and Unpatterned Sapphire Substrate (0 0 0 1)," Journal of Crystal Growth, vol. 308, pp. 321-324 (2007)
    [46] D.-H. Kang, J.-C. Song, B.-Y. Shim, E.-A. Ko, D.-W. Kim, S. Kannappan, and C.-R. Lee, "Characteristic Comparison of GaN Grown on Patterned Sapphire Substrates Following Growth Time," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 46, pp. 2563-2566 (2007)
    [47] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Enhancement of the Light Output Power of InGaN/GaN Light-Emitting Diodes Grown on Pyramidal Patterned Sapphire Substrates in the Micro- and Nanoscale," Journal of Applied Physics, vol. 103, p. 014314 (2008)
    [48] Y. H. Kim, H. Ruh, Y. K. Noh, M. D. Kim, and J. E. Oh, "Microstructural Properties and Dislocation Evolution on a GaN Grown on Patterned Sapphire Substrate: A Transmission Electron Microscopy Study," Journal of Applied Physics, vol. 107, p. 063501 (2010)
    [49] Y. B. Tao, T. J. Yu, Z. Y. Yang, D. Ling, Y. Wang, Z. Z. Chen, Z. J. Yang, and G. Y. Zhang, "Evolution and Control of Dislocations in GaN Grown on Cone-Patterned Sapphire Substrate by Metal Organic Vapor Phase Epitaxy," Journal of Crystal Growth, vol. 315, pp. 183-187 (2011)
    [50] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tsai, C. H. Liu, and S. C. Chen, "Improved ESD Protection by Combining InGaN-GaN MQW LEDs with GaN Schottky Diodes," IEEE Electron Device Letters, vol. 24, pp. 129-131 (2003)
    [51] S. J. Chang, C. F. Shen, S. C. Shei, R. W. Chuang, C. S. Chang, W. S. Chen, T. K. Ko, and J. K. Sheu, "Highly Reliable Nitride-Based LEDs with Internal ESD Protection Diodes," IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 442-447 (2006)
    [52] S.-C. Shei, J.-K. Sheu, and C.-F. Shen, "Improved Reliability and ESD Characteristics of Flip-Chip GaN-Based LEDs With Internal Inverse-Parallel Protection Diodes," IEEE Electron Device Letters, vol. 28, pp. 346-349 (2007)
    [53] R. W. Chuang, P. C. Tsai, Y. K. Su, and C. H. Chu, "Improved ESD Properties by Combining GaN-Based Light-Emitting Diode with MOS Capacitor," Solid-State Electronics, vol. 52, pp. 1043-1046 (2008)
    [54] S. Hwang and J. Shim, "Improved ESD Voltage by Inserting Floating Metal Ring in GaN-Based Light Emitting Diodes," Electronics Letters, vol. 44, pp. 590-591 (2008)
    [55] Y. K. Su, S. J. Chang, S. C. Wei, S.-M. Chen, and W.-L. Li, "ESD Engineering of Nitride-Based LEDs," IEEE Transactions on Device and Materials Reliability, vol. 5, pp. 277-281 (2005)
    [56] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, "High Efficiency and Improved ESD Characteristics of GaN-Based LEDs with Naturally Textured Surface Grown by MOCVD," IEEE Photonics Technology Letters, vol. 18, pp. 1213-1215 (2006)
    [57] C.-H. Jang, J. K. Sheu, C. M. Tsai, S. C. Shei, W. C. Lai, and S. J. Chang, "Effect of Thickness of the p-AlGaN Electron Blocking Layer on the Improvement of ESD Characteristics in GaN-Based LEDs," IEEE Photonics Technology Letters, vol. 20, pp. 1142-1144 (2008)
    [58] T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, "Nitride-Based LEDs with Modulation-Doped Al0.12Ga0.88N-GaN Superlattice Structures," IEEE Transactions on Electron Devices, vol. 51, pp. 1743-1746 (2004)
    [59] S.-K. Jeon, J.-G. Lee, E.-H. Park, J. Jang, J.-G. Lim, S.-K. Kim, and J.-S. Park, "The Effect of the Internal Capacitance of InGaN-Light Emitting Diode on the Electrostatic Discharge Properties," Applied Physics Letters, vol. 94, p. 131106 (2009)
    [60] J.-B. Huang, N. G. Nguyen, C.-H. Chou, S.-S. Wei, and L.-S. Hong, "Nitride-based LEDs Fabricated on GaN ZnO-buffered Sapphire Substrates," Journal of the Taiwan Institute of Chemical Engineers (2012 article in press)
    [61] J.-B. Huang, L.-S. Hong, and C.-C. Chou, "Improvement of ESD Level of GaN-Based LEDs Using Antiparallel Ga- and N-Polar Domains in p-GaN Layer," IEEE Electron Device Letters, vol. 32, pp. 342-344 (2011)
    [62] A. R. Barron and C. Smith. (2010). Crystal Structure. Available: http://cnx.org/content/m16927/latest/
    [63] E. F. Schubert, Light-Emitting Diodes, 2nd ed. New York: Cambridge University Press (2006)
    [64] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, "Large-Band-Gap SiC, III-V Nitride, and II-VI ZnSe-Based Semiconductor Device Technologies," Journal of Applied Physics, vol. 76, pp. 1363-1398 (1994)
    [65] S. Nakamura, T. Mukal, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-type Mg-Doped GaN Films," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 31, pp. L139-142 (1992)
    [66] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "Hole Compensation Mechanism of P-Type GaN Films," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 31, pp. 1258-1266 (1992)
    [67] S. Nakamura, T. Mukai, and M. Senoh, "Candela-Class High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Light-Emitting Diodes," Applied Physics Letters, vol. 64, pp. 1687-1689 (1994)
    [68] S. Nakamura, T. Mukai, and M. Senoh, "High-Brightness InGaN/AlGaN Double-Heterostructure Blue-Green-Light-Emitting Diodes," Journal of Applied Physics, vol. 76, pp. 8189-8191 (1994)
    [69] S. Nakamura, T. Mukai, M. Senoh, S.-i. Nagahama, and N. Iwasa, "InxGa(1 - x)N/InyGa(1 - y)N Superlattices Grown on GaN Films," Journal of Applied Physics, vol. 74, pp. 3911-3915 (1993)
    [70] M. Koike, S. Yamasaki, S. Nagai, N. Koide, S. Asami, H. Amano, and I. Akasaki, "High-Quality GaInN/GaN Multiple Quantum Wells," Applied Physics Letters, vol. 68, pp. 1403-1405 (1996)
    [71] M. Quirk and J. Serda, Semiconductor Manufacturing Technology. New Jersey: Prentice-Hall (2001)
    [72] S.-W. Kim, H. Aida, and T. Suzuki, "The Effect of a Slight Mis-Orientation Angle of c-Plane Sapphire Substrate on Surface and Crystal Quality of MOCVD Grown GaN Thin Films," physica status solidi (c), vol. 1, pp. 2483-2486 (2004)
    [73] S. J. Pearton, GaN and Related Materials. Netherlands: Gordon and Breach Science Publishers (1997)
    [74] S. Nakamura and S. F. Chichibu, Introduction to Nitride Semiconductor Blue Lasers and Lighting Diodes. London: Taylor & Francis (2000)
    [75] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, "Dislocation Generation in GaN Heteroepitaxy," Journal of Crystal Growth, vol. 189-190, pp. 231-243 (1998)
    [76] J. Chen, S. M. Zhang, B. S. Zhang, J. J. Zhu, G. Feng, X. M. Shen, Y. T. Wang, H. Yang, and W. C. Zheng, "Effects of Reactor Pressure on GaN Nucleation Layers and Subsequent GaN Epilayers Grown on Sapphire Substrate," Journal of Crystal Growth, vol. 254, pp. 348-352 (2003)
    [77] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, "Pendeoepitaxy of Gallium Nitride Thin Films," Applied Physics Letters, vol. 75, pp. 196-198 (1999)
    [78] R. F. Davis, T. Gehrke, K. J. Linthicum, T. S. Zheleva, E. A. Preble, P. Rajagopal, C. A. Zorman, and M. Mehregany, "Pendeo-Epitaxial Growth of Thin Films of Gallium Nitride and Related Materials and Their Characterization," Journal of Crystal Growth, vol. 225, pp. 134-140 (2001)
    [79] T. Webb, Thomas Swan Scientific Equipment 19x2" GaN System User Manual. Cambridge, U.K.: Thomas Swan Scientific Equipment Ltd. (2004)
    [80] W. C. Peng and Y. C. S. Wu, "Improved Luminance Intensity of InGaN-GaN Light-Emitting Diode by Roughening both the p-GaN Surface and the Undoped-GaN Surface," Applied Physics Letters, vol. 89, p. 041116 (2006)
    [81] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, and C. C. Lin, "Improved Light Output Power of InGaN/GaN MQW LEDs by Lower Temperature p-GaN Rough Surface," Materials Science and Engineering B: Solid-State Materials for Advanced Technology, vol. 112, pp. 10-13 (2004)
    [82] T. Ito, M. Sumiya, Y. Takano, K. Ohtsuka, and S. Fuke, "Influence of Thermal Annealing on GaN Buffer Layers and the Property of Subsequent GaN Layers Grown by Metalorganic Chemical Vapor Deposition," Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, vol. 38, pp. 649-653 (1999)
    [83] A. Ougazzaden, D. J. Rogers, F. H. Teherani, G. Orsal, T. Moudakir, S. Gautier, V. E. Sandana, F. Jomard, M. Abid, M. Molinari, M. Troyon, P. L. Voss, D. McGrouther, and J. N. Chapman, "Epitaxial MOVPE Growth of Highly c-axis Oriented InGaN/GaN Films on ZnO-buffered Si (111) Substrates," Proceedings of SPIE, Oxide-based Materials and Devices, San Francisco, CA, United States, vol. 7603, p. 76031D (2010)
    [84] K. Black, A. C. Jones, P. R. Chalker, J. M. Gaskell, R. T. Murray, T. B. Joyce, and S. A. Rushworth, "MOCVD of ZnO Thin Films for Potential Use as Compliant Layers for GaN on Si," Journal of Crystal Growth, vol. 310, pp. 1010-1014 (2008)
    [85] F. Lipskil, S. B. Thapa, J. Hertkorn, T. Wunderer, S. Schwaiger, F. Scholz, M. Feneberg, M. Wiedenmann, K. Thonke, H. Hochmuth, M. Lorenz, and M. Grundmann, "Studies Towards Freestanding GaN in Hydride Vapor Phase Epitaxy by in-situ Etching of A Sacrificial ZnO Buffer Layer," physica status solidi (c), vol. 6, pp. S352-S355 (2009)
    [86] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, "A New Method of Reducing Dislocation Density in GaN Layer Grown on Sapphire Substrate by MOVPE," Journal of Crystal Growth, vol. 221, pp. 334-337 (2000)
    [87] J. M. Shah, Y. L. Li, T. Gessmann, and E. F. Schubert, "Experimental Analysis and Theoretical Model for Anomalously High Ideality Factors (n>>2.0) in AlGaN/GaN p-n Junction Diodes," Journal of Applied Physics, vol. 94, pp. 2627-2630 (2003)
    [88] M. Lada, A. G. Cullis, and P. J. Parbrook, "Effect of Anneal Temperature on GaN Nucleation Layer Transformation," Journal of Crystal Growth, vol. 258, pp. 89-99 (2003)
    [89] T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh, "Control of Initial Nucleation by Reducing the V/III Ratio During the Early Stages of GaN Growth," physica status solidi (a), vol. 180, pp. 45-50 (2000)
    [90] J. Han, T.-B. Ng, R. M. Biefeld, M. H. Crawford, and D. M. Follstaedt, "The Effect of H2 on Morphology Evolution During GaN Metalorganic Chemical Vapor Deposition," Applied Physics Letters, vol. 71, pp. 3114-3116 (1997)
    [91] M. Lünenbürger, H. Protzmann, M. Heuken, and H. Jürgensen, "In Situ Monitoring of GaN Growth in Multiwafer MOVPE Reactors," physica status solidi (a), vol. 176, pp. 727-731 (1999)
    [92] T. Ng, J. Han, R. Biefeld, and M. Weckwerth, "In-situ Reflectance Monitoring During MOCVD of AlGaN," Journal of Electronic Materials, vol. 27, pp. 190-195 (1998)
    [93] D. A. Wood, P. J. Parbrook, R. J. Lynch, M. Lada, and A. G. Cullis, "The Influence of Buffer Layer Growth Parameters on the Microstructure and Surface Morphology of GaN on Sapphire Substrates Correlated with in-situ Reflectivity," physica status solidi (a), vol. 188, pp. 641-645 (2001)
    [94] Q. Sun, Y. S. Cho, I.-H. Lee, J. Han, B. H. Kong, and H. K. Cho, "Nitrogen-Polar GaN Growth Evolution on C-Plane Sapphire," Applied Physics Letters, vol. 93, p. 131912 (2008)
    [95] D. L. Smith, Thin-Film Deposition Principles and Practice: McGraw-Hill (1999)
    [96] D. D. Koleske, M. E. Coltrin, K. C. Cross, C. C. Mitchell, and A. A. Allerman, "Understanding GaN Nucleation Layer Evolution on Sapphire," Journal of Crystal Growth, vol. 273, pp. 86-99 (2004)
    [97] S. Blonski and S. H. Garofalini, "Molecular Dynamics Simulations of α-Alumina and γ-Alumina Surfaces," Surface Science, vol. 295, pp. 263-274 (1993)
    [98] H. Amano, T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Katoh, and I. Akasaki, "In-Situ TEM Monitoring of the Crystallization Process of Low Temperature Deposited Nitride Buffer Layers on Sapphire and the Effect of Insertion of Low Temperature Deposited Buffer Layer on the Reduction of Threading Dislocations in OMVPE Grown GaN on Sapphire," Proc. of the Second Symp. on Atomic-Scale Surface and Interface Dynamics, Tokyo, pp. 199-203 (1998)
    [99] Y. Kobyashi, T. Akasaka, and N. Kobayashi, "Thermal Stability of Low-Temperature GaN and AlN Buffer Layers During Metalorganic Vapor Phase Epitaxy Monitored by In Situ Shallow-Angle Reflectance Using Ultraviolet Light," Japanese Journal of Applied Physics, Part 2: Letters, vol. 37, pp. L1208-1210 (1998)
    [100] 天野浩 and 赤崎勇, "サファイア基板上III族窒化物半導體成長における低溫堆積層の效果と機構," 應用物理, vol. 68, pp. 768-773 (1999)
    [101] N. Okada, H. Oshita, A. Kurisu, and K. Tadatomo, "Growth Mechanism of Nonpolar and Semipolar GaN Layers from Sapphire Sidewalls on Various Maskless Patterned Sapphire Substrates," Japanese Journal of Applied Physics, vol. 50, p. 035602 (2011)
    [102] H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, "Formation Mechanism of V Defects in the InGaN/GaN Multiple Quantum Wells Grown on GaN Layers with Low Threading Dislocation Density," Applied Physics Letters, vol. 79, pp. 215-217 (2001)
    [103] Y. Chen, T. Takeuchi, H. Amano, I. Akasaki, N. Yamada, Y. Kaneko, and S. Y. Wang, "Pit Formation in GaInN Quantum Wells," Applied Physics Letters, vol. 72, pp. 710-712 (1998)
    [104] N. Sharma, P. Thomas, D. Tricker, and C. Humphreys, "Chemical Mapping and Formation of V-Defects in InGaN Multiple Quantum Wells," Applied Physics Letters, vol. 77, pp. 1274-1276 (2000)
    [105] F. A. Ponce, D. P. Bour, W. T. Young, M. Saunders, and J. W. Steeds, "Determination of Lattice Polarity for Growth of GaN Bulk Single Crystals and Epitaxial Layers," Applied Physics Letters, vol. 69, pp. 337-339 (1996)
    [106] Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, "Formation Mechanism of Nanotubes in GaN," Physical Review Letters, vol. 79, pp. 2835-2838 (1997)
    [107] J. L. Rouviere, M. Arlery, R. Niebuhr, K. H. Bachem, and O. Briot, "Correlation between Surface Morphologies and Crystallographic Structures of GaN Layers Grown by MOCVD on Sapphire," MRS Internet Journal of Nitride Semiconductor Research, vol. 1, p. article 33 (1996)
    [108] Z. Chine, A. Rebey, H. Touati, E. Goovaerts, M. Oueslati, B. E. Jani, and S. Laugt, "Stress and Density of Defects in Si-Doped GaN," physica status solidi (a), vol. 203, pp. 1954-1961 (2006)
    [109] K. Watanabe, J. R. Yang, S. Y. Huang, K. Inoke, J. T. Hsu, R. C. Tu, T. Yamazaki, N. Nakanishi, and M. Shiojiri, "Formation and Structure of Inverted Hexagonal Pyramid Defects in Multiple Quantum Wells InGaN/GaN," Applied Physics Letters, vol. 82, pp. 718-720 (2003)
    [110] M. Stutzmann, O. Ambacher, M. Eickhoff, U. Karrer, A. Lima Pimenta, R. Neuberger, J. Schalwig, R. Dimitrov, P. J. Schuck, and R. D. Grober, "Playing with Polarity," physica status solidi (b), vol. 228, pp. 505-512 (2001)

    QR CODE