簡易檢索 / 詳目顯示

研究生: 黃聖博
SHENG-BO HUANG
論文名稱: 高功率偏極化白光 COB LED 之封裝結構研究
Study on the Packaging Structure of High Power Polarized White Chip-on-board Light Emitting Diodes
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 葉秉慧
Pinghui Sophia Yeh
林保宏
Pao-hung Lin
楊恆隆
Heng-long Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 偏極化白光 COB LED散熱鰭片散熱膏氮化鋁
外文關鍵詞: Polarized white COB LED, Heat sink, thermal grease, AlN
相關次數: 點閱:320下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有線柵薄膜偏光片(Wire grid polarizer film, WGF)的白光晶片直
    接封裝(Chip-on-board, COB)發光二極體(Light emitting Diodes, LED),
    有偏極化光源、高消光比、降低眩光及提升顏色均勻性等優點。隨著
    白光 COB LED 功率的增加,使得白光 COB LED 封裝膠的表面溫度
    跟著提高。因此無法使用基板材質為塑膠的線柵薄膜偏光片。
    為了降低高功率白光 COB LED 的表面溫度,本研究針對白光
    COB LED 的封裝結構、散熱器與散熱膏做優化。白光 COB LED 的
    最佳封裝結構為玻璃板/螢光膠層/藍光 COB LED。實驗的結果顯示,
    螢光膠層添加氧化鋁粉的最佳封裝結構白光 COB LED 與傳統白光
    COB LED 相比,其表面溫度下降 9.5%且出光量下降 9.7%。其中蓋在
    螢光膠層上之玻璃板作用可以降低溫度與增加出光量,而在螢光膠層
    內添加氮化鋁粉可提升導熱係數。對於散熱器而言,表面面積大的柱
    型散熱鰭片散熱器具有較佳的散熱效果。對於散熱膏而言,混合有石
    墨烯與碳漿之散熱膏在適當的濃度與厚度下具有最佳散熱性。


    The high power polarized white chip-on-board (COB) type light
    emitting diodes (LEDs) which packaged with the wire-grid polarizer film
    (WGF) have a characteristics of polarized light, high extinction ratio,
    reduced glare and improved angular illumination uniformity. As the output
    power of white COB LED increases, the surface temperature of the
    phosphor resin layer of the white COB LED rise. Therefore, the wire-grid
    polarizer with polymeric substrate cannot be implemented into the white
    COB LEDs.
    To lower the surface temperature of phosphor resin layer on the high
    power white COB LED, we investigated the optimized package structures
    of white COB LED, heat sink and thermal grease in this study. The
    optimized package structure is as Glass substrate /Phosphor resin mixed
    with Aluminum Nitride (AlN) /blue COB LED. According to the
    experimental results, the white COB LED with the optimized package
    structure which has the phosphor resin blending with AIN powder reduce
    the surface temperature by 9.5% and the luminous efficiency by 9.7%
    while compared with the traditional white COB LED. The effect of the
    glass substrate, which is deposited on the top of the silicon resin, is to
    reduce the surface temperature and enhance the output luminance. The
    AIN particulate can improve the thermal conductivity of the phosphor resin
    layer when add to the silicon resin. For the heat sink, the larger of surface
    area of the heat dissipation fin of the column type heat sink, the better heat
    dissipation effect. For the thermal grease made of mixing carbon paste with
    graphene powder, an appropriate concentration and thickness have best
    thermal performance.

    第一章 導論................................................................................................... 1 1.1 前言................................................................................................... 1 1.2 文獻回顧 ........................................................................................... 3 1.2.1 偏極化白光 LED ....................................................................... 3 1.2.2 COB 白光 LED 封裝結構.......................................................... 4 1.2.3 眩光效應.................................................................................... 6 1.2.4 熱傳原理與分析........................................................................ 8 1.2.5 散熱元件與材料...................................................................... 11 1.3 論文架構 ......................................................................................... 14 第二章 研究目的與方法.............................................................................. 15 2.1 研究目的 ......................................................................................... 15 2.2 量測架構與儀器.............................................................................. 16 2.2.1 積分球特性量測...................................................................... 16 2.2.2 配光曲線特性量測.................................................................. 20 2.2.3 表面溫度量測.......................................................................... 21 2.3 白光 COB LED 封裝製程 ............................................................... 24 2.4 偏極化白光 COB LED 封裝 ........................................................... 31 2.4.1 線柵薄膜偏光片性質 .............................................................. 31 2.4.2 製作流程.................................................................................. 34 2.5 散熱器與散熱膏製作...................................................................... 35 第三章 偏極化白光 COB LED 之熱管理.................................................... 37 3.1 散熱膏對表面溫度之影響 .............................................................. 37 3.2 散熱器對表面溫度之影響 .............................................................. 41 3.3 封裝結構對表面溫度之影響 .......................................................... 45 第四章 偏極化白光 COB LED 封裝結構之最佳化 .................................... 62 4.1 對光通量之影響.............................................................................. 62 4.2 成品光性質比較.............................................................................. 71 第五章 實驗結果與熱模擬分析.................................................................. 82 5.1 模擬目的與方法.............................................................................. 82 5.2 幾何建模 ......................................................................................... 82 5.3 材料之導熱係數.............................................................................. 88 5.4 模擬程序 ......................................................................................... 89 5.5 模擬結果與分析.............................................................................. 94 第六章 結論與未來展望.............................................................................. 97 6.1 結論................................................................................................. 97 6.2 未來展望 ......................................................................................... 98 參考文獻 ...............................................................................................................100

    [1] Su, J.-C. and S.-C. Chou, "Performance comparison of polarized white
    light emitting diodes using wire-grid polarizers with polymeric and
    glass substrates", Optics & Laser Technology. 100: p. 40-44, 2018.
    [2] Sim, J.-K., et al., "Characteristic enhancement of white LED lamp
    using low temperature co-fired ceramic-chip on board package",
    Current Applied Physics. 12(2): p. 494-498, 2012.
    [3] 祁妹琪, et al., "COB 封装对 LED 光学性能影响的研究", 2012.
    [4] Kasahara, T., et al., "Discomfort Glare Caused by White LED Light
    Sources", Journal of Light & Visual Environment. 30(2): p. 95-103,
    2006.
    [5] 日本照明學會, "照明手冊", 全華科技圖書股份有限公司, 2014.
    [6] DoWiin 端雲科技. http://www.dowiin.com/zhi-shi-ku/xuan-guang.
    [7] Chang, C.F., T.Y. Wang, and C.H. Liu, Research and analysis of the
    unified glare rating (UGR) of indoor lighting. Vol. 28. 243-249, 2013.
    [8] Poppe, A., G. Farkas, and G. Horváth, "ELECTRICAL THERMAL
    AND OPTICAL CHARACTERIZATION OF POWER LED",
    THERMINIC 2006: p. 197-202, 2006.
    [9] Ferguson, I.T., et al. Thermal challenges facing new-generation lightemitting diodes (LEDs) for lighting applications. in Solid State
    Lighting II of Conference, 2002.
    [10] Chan, S.I., et al., "Accelerated life test of high power white light
    emitting diodes based on package failure mechanisms",
    Microelectronics Reliability. 51(9-11): p. 1806-1809, 2011.
    [11] Chhajed, S., et al., "Influence of junction temperature on chromaticity
    and color-rendering properties of trichromatic white-light sources based
    on light-emitting diodes", Journal of Applied Physics. 97(5), 2005.
    [12] Zhang, K., et al., "Carbon nanotube thermal interface material for highbrightness light-emitting-diode cooling", Nanotechnology. 19(21): p.
    215706, 2008.
    [13] Ferguson, I.T., et al. Thermal management of LEDs: package to
    system. in Third International Conference on Solid State Lighting of
    Conference, 2004.
    [14] Yao, H.W., et al. High-power AlInGaN light-emitting diodes. in LightEmitting Diodes: Research, Manufacturing, and Applications V of
    Conference, 2001.
    [15] Wierer, J.J., et al., "High-power AlGaInN flip-chip light-emitting
    diodes", Applied Physics Letters. 78(22): p. 3379-3381, 2001.
    [16] INCROPERA, F.P., et al., "Introduction to heat transfer", 1985.
    [17] Deng, Y. and J. Liu, "A liquid metal cooling system for the thermal
    management of high power LEDs", International Communications in
    Heat and Mass Transfer. 37(7): p. 788-791, 2010.
    [18] Li, J., et al., "Study on a cooling system based on thermoelectric cooler
    for thermal management of high-power LEDs", Microelectronics
    Reliability. 51(12): p. 2210-2215, 2011.
    [19] Wang, N., et al. Numerical study on thermal management of LED
    packaging by using thermoelectric cooling. in 2009 International
    Conference on Electronic Packaging Technology & High Density
    Packaging, 2009.
    [20] Morrison, A.T. Optimization of heat sink fin geometries for heat sinks
    in natural convection. in [1992 Proceedings] Intersociety Conference
    on Thermal Phenomena in Electronic Systems, 1992.
    [21] Huang, C.-H. and G.-J. Wang, "A design problem to estimate the
    optimal fin shape of LED lighting heat sinks", International Journal of
    Heat and Mass Transfer. 106: p. 1205-1217, 2017.
    [22] Tang, Y., et al., "A high power LED device with chips directly
    mounted on heat pipes", Applied Thermal Engineering. 66(1): p. 632-
    639, 2014.
    [23] Wang, H., et al., "Heat transfer performance of a novel tubular
    oscillating heat pipe with sintered copper particles inside flat-plate
    evaporator and high-power LED heat sink application", Energy
    Conversion and Management. 189: p. 215-222, 2019.
    [24] Kemaloglu, S., G. Ozkoc, and A. Aytac, "Properties of thermally
    conductive micro and nano size boron nitride reinforced silicon rubber
    composites", Thermochimica Acta. 499(1-2): p. 40-47, 2010.
    [25] Kim, C.-Y., et al., "The alignment of AlN platelets in polymer matrix
    and its anisotropic thermal properties", Journal of Materiomics, 2019.
    [26] Hashim, N.H., P. Anithambigai, and D. Mutharasu, "Thermal
    characterization of high power LED with ceramic particles filled
    thermal paste for effective heat dissipation", Microelectronics
    Reliability. 55(2): p. 383-388, 2015.
    [27] Yung, K.C. and H. Liem, "Enhanced thermal conductivity of boron
    nitride epoxy-matrix composite through multi-modal particle size
    mixing", Journal of Applied Polymer Science. 106(6): p. 3587-3591,
    2007.
    [28] Ohashi, M., et al., "Spherical Aluminum Nitride Fillers for HeatConducting Plastic Packages", Journal of the American Ceramic
    Society. 88(9): p. 2615-2618, 2005.
    [29] Song, Y.-H., et al., "New design of hybrid remote phosphor with
    single-layer graphene for application in high-power LEDs", Chemical
    Engineering Journal. 287: p. 511-515, 2016.
    [30] KASEI, A. http://www.asahi-kasei.co.jp/ake-mate/wgf/en/index.html.
    [31] 周士傑, "以具有高分子基板之線柵薄膜偏光片封裝偏極化白光發
    光二極體", 碩士論文, 國立台灣科技大學, 台北, 2016.
    [32] GlacialTech. http://www.glaciallight.com/products/skd-coldforging_FRseries.htm.
    [33] OPTO, F.C. http://fcopto.com/.
    [34] Sharifpur, M., T. Ntumba, and J.P. Meyer. Parametric Analysis of
    Effective Thermal Conductivity Models for Nanofluids. in Volume 9:
    Micro- and Nano-Systems Engineering and Packaging, Parts A and B
    of Conference, 2012.

    QR CODE