簡易檢索 / 詳目顯示

研究生: 潘博揚
Bo-Yang Pan
論文名稱: 數位五連方積木遊戲中專家與生手行為模式的差異
Differential Behavior Patterns between Experts and Novices in Digital Pentomino Game
指導教授: 鄭海蓮
Hi-Lian Jeng
口試委員: 鄭海蓮
Hi-Lian Jeng
施宣光
Shen-Guan Shih
高宜敏
Yi-Ming Kao
林逸農
Yi-Lung Lin
學位類別: 碩士
Master
系所名稱: 人文社會學院 - 數位學習與教育研究所
Graduate Institute of Digital Learning and Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 83
中文關鍵詞: 五連方五連方積木拼圖遊戲專家與生手遊戲式學習行為模式分析空間能力
外文關鍵詞: Pentomino, Puzzle Games, Experts and Novices, Game-based learning, Behavioral Analysis, Spatial abilities
相關次數: 點閱:436下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討在數位五連方積木遊戲中專家與生手行為模式的差異,受試者分為專家組與生手組,1位積木專家與4位操作精確度與專家相似的台北某大學學生作為專家組受試者,14位台北某大學學生作為生手組。
    本研究延續文獻研究的專家與生手操作實體五連方積木的差異實驗,並使用數位五連方積木拼圖遊戲,加入紀錄操作過程的功能,從中分析受試者的操作次數、操作時間與行為模式,以找出專家與生手在不同難度關卡下的行為模式差異。
    研究結果顯示,在不同難度的關卡下,專家與生手的操作次數都有顯著的差異,且專家的操作次數比生手少,而唯有在難度較高的單一解關卡下,專家與生手的操作時間才有顯著差異,專家能以較短的時間完成任務,但在本實驗自行設計的第六關,同樣是單一解題型,在操作時間上卻沒有顯著差異,且生手組比專家組較快完成任務,此與文獻研究有些微差異,從行為模式分析中去探討專家與生手的差異,並參考過去文獻對專家與生手在策略上的差異來對應本實驗結果,專家經常使用策略思考analogical(類推法),而生手則是經常使用策略思考trial and error(試誤法),本實驗之專家先備知識比生手多,也能較有系統性、有組織的統整知識,針對問題的特徵還找出最有用的解題方法,解決問題的效率也較佳,此表示本研究專家與生手的差異與研究文獻是相符合的。
    主要研究結論為,專家與生手在五連方積木拼圖遊戲上存在著操作次數上的差異,以及在較高難度的關卡上會出現操作時間的差異,而在思考策略上也有很大的差異,希望未來能以本研究的結果來擴展對於空間訓練為主題之遊戲式學習課程設計,幫助改善遊戲教材之提示功能,以達到將生手更快訓練成為專家,並能更快提升空間能力。


    The study explores the differences between expert and novice behavioral patterns in the digital Pentomino game. The 19 subjects were divided into 5 experts and 14 novices.
    This study further expands on the literature of experts and novices of Pentomino players through the use of sequential analysis of student’s behaviors. This is done through recording every action of the player, from number of actions and type of action, to duration each action took. Using this data behavioral patterns were developed for analysis.
    Results indicate experts taken significantly less actions during the high difficult task.
    Experts took significantly less time in all tasks except the sixth task where there was only a single solution. Instead both had similar times. By analyzing behavioral patterns, it is found experts often worked analogically while novices worked through trial and error. Results are consistent with prior literature, experts were found to have prior knowledge of Pentomino tasks, worked more systematically, and were better at consolidating information to find the most efficient problem-solving method for the problem at hand.
    In conclusion, there are differences between expert and novice behavior in Pentomino games, where experts had taken significantly less actions and less time to complete tasks due to their differences in strategy. Future studies may expand on using the results of this study to build upon teaching spatial awareness in game-based learning curriculums, as well as providing individualized prompts to help novices achieve expert levels faster, and improves their spatial abilities faster.

    第一章 緒論 1 第一節 研究背景與動機 2 第二節 研究目的與問題 3 第三節 名詞解釋 4 第四節 研究範圍與限制 6 第二章 文獻探討 7 第一節 空間能力與STEM的關聯性 7 第二節 行為模式分析的方法 9 第三節 專家與生手的定義 11 第四節 專家與生手的問題解決策略差異 12 第五節 專家與生手問題解決能力的差異對教學上的啟示 15 第三章 研究方法 16 第一節 受測樣本 16 第二節 研究工具 16 第三節 研究設計與假設 25 第四節 實驗施測流程 25 第五節 資料處理與分析 27 第四章 研究結果與討論 28 第一節 描述性統計 28 第二節 專家與生手在不同難度關卡的操作次數與時間差異 30 第三節 專家與生手在不同難度關卡的行為序列分析 32 第五章 研究結論與討論 36 第一節 研究結論 36 第二節 研究建議 39 參考文獻 41 附錄一 專家組與生手組第三關MSPT輸出結果 48 附錄二 生手將嘗試過的積木集中到某區塊的參考資料 50 附錄三 第二關專家組優先使用符合特徵點的積木參考資料 52 附錄四 多數受試者第六關使用U積木參考資料 53 附錄五 專家組在各關卡之有效動作資料 54 附錄六 生手組部分共通之錯誤動作資料 63 附錄七 專家一人各關卡紀錄 68 附錄八 生手一人各關卡紀錄 69 附錄九 XAPI程式碼 70

    王春展(1997)。專家與生手間問題解決能力的差異及其在教學上的啟示。教育研究資訊,5(2),80-92。
    李志謙(2013)。影響國小學生電腦化心像旋轉能力之測量表現之因素。國立臺灣科技大學數位學習與教育研究所碩士論文,未出版,台北。
    周書毓(2005)。問題解決--專家與生手教師能力知多少。網路社會學通訊期刊,51。取自:2017 年 7 月 31日,http://www.nhu.edu.tw/~society/e-j/51/。
    林清山譯(1994)。教育心理學──認知取向。臺北:遠流。
    智庫百科(2014)。行為模式,取自: 2016年6月24日, http://wiki.mbalib.com/wiki/%E8%A1%8C%E4%B8%BA%E6%A8%A1%E5%BC%8F。
    Beilock, S. L., & Carr, T. H. (2004). From novice to expert performance: Memory, attention and the control of complex sensori-motor skills. In A. M. Williams & N. J. Hodges (Eds.), Skill Acquisition in Sport: Research, Theory and Practice (pp. 309-327). London, Routledge.
    Ceci, S. J., & Williams, W. M. (2007). Are we moving closer and closer apart? Shared evidence leads to conflicting views. In S. J. Ceci, & W. M. Williams (Eds.), Why aren’t there more women in science: Top researchers debate the evidence (pp. 213–235). Washington, DC: American Psychological Association.
    Cherney, I. D. (2008). Mom, let me play more computer games: They improve my mental rotation skills. Sex Roles, 59(11-12), 776-786.
    Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24(3), 329-340.
    Dabbs, J. M., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19(2), 89-98.
    Devon, R., Engle, R., & Turner, G. (1998). The effects of spatial visualization skill training on gender and retention in engineering. Journal of Women and Minorities in Engineering, 4(4), 371–380.
    Dreyfus, S. E. (2004). The five-stage model of adult skill acquisition. Bulletin of Science, Technology & Society, 24(3), 177-181.
    Fitts, P. M., & Posner, M. I. (1967). Human Performance. Belmont, CA: Brooks/Cole.
    Fournier-Viger, P., Faghihi, U., Nkambou, R., & Nguifo, E. M. (2010). Exploiting Sequential Patterns Found in Users' Solutions and Virtual Tutor Behavior to Improve Assistance in ITS. Educational Technology & Society, 13(1), 13-34.
    Fournier-Viger, P., Nkambou, R & Mephu Nguifo, E. (2008). A Knowledge Discovery Framework for Learning Task Models from User Interactions in Intelligent Tutoring Systems. Retrieved July 31, 2017 from http://www.philippe-fournier-viger.com/fournier-viger_sequential_patterns_micai08.pdf
    Fournier-Viger, P., Wu, C. W., Gomariz, A., & Tseng, V. S. (2014). VMSP: Efficient vertical mining of maximal sequential patterns. Retrieved July 31, 2017 from http://www.philippe-fournier-viger.com/spmf/VMSP_maximal_sequential_patterns_2014.pdf
    Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. (1998). Training ‘greeble’ experts: A framework for studying expert object recognition processes. Vision Research, 38(15), 2401-2428.
    Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A. (2007). The science of sex differences in science and mathematics. Psychological Science in the Public Interest, 8, 1–51.
    Hedman, L., Ström, P., Andersson, P., Kjellin, A., Wredmark, T., & Felländer-Tsai, L. (2006). High-level visual-spatial ability for novices correlates with performance in a visual-spatial complex surgical simulator task. Surgical Endoscopy, 20(8), 1275–1280.
    Hirschhorn, D. (2001). Try it! Pentominoes. Illinois: Learning resources. Intelligence, 32(2), 175–191.
    Hoffman, B., & Nadelson, L. (2010). Motivational engagement and video gaming: A mixed methods study. Educational Technology Research and Development, 58(3), 245–270.
    Hong, J. C., & Liu, M. C. (2003). A study on thinking strategy between experts and novices of computer games. Computers in Human Behavior, 19(2), 245-258.
    Hsieh, Y. H., Lin, Y. C., & Hou, H. T. (2015). Exploring Elementary-School Students’ Engagement Patterns in a Game-Based Learning Environment. Educational Technology & Society, 18(2), 336-348.
    Huang, W. H., Huang, W. Y., & Tschopp, J. (2010). Sustaining iterative game playing processes in DGBL: The relationship between motivational processing and outcome processing. Computers & Education, 55(2), 789–797.
    Jeng, H. L., & Chen, Y. F. (2013). Comparisons of latent factor region means of spatial ability based on measurement invariance. Learning and Individual Differences, 27, 16-25.
    Jeng, H. L., Lai, W. Y., & Chao, A. K. (2010, October). Modeling Spatial Geometric Reasoning. Paper presented in the 15th Conference on Attention and Perception, Intersecting Social and Cognitive Neurosciences, National Chung Cheng University, October 1-2, Chiayi, Taiwan.
    Jeng, H. L., & Liu, G. F. (2016). Test interactivity is promising in promoting gender equity in females' pursuit of STEM careers. Learning and Individual Differences, 49, 201-208.
    Johnson, S. D. (1988). Cognitive analysis of expert and novice troubleshooting performance. Performance Improvement Quarterly, 1(3), 38–54.
    Jonassen, D. H., Hannum, W. H., & Tessmer, M. (1989). Handbook of Task Analysis Procedures (p. 410). Westport: Praeger Publishers.
    Kay, D. S., & Black, J. B. (1990). Knowledge transformations during the acquisition of computer expertise. In S. P. Robertson, W. Zachary, & J. B. Black (Eds.), Cognition, computing, and cooperation. Norwood, NJ: Ablex.
    Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and technical inno-vation: Spatial ability's unique role. Psychological Science, 24(9), 1831–1836.
    Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31, 549–579
    Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. (2009). Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21(9), 1833-2840.
    Krulak, C. C. (1997). Military thinking and decision making exercises. Online at: http://www. tediv. usmc. mil/dlb/milthink.
    Larkin, J. H., McDermott, J. Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4, 317-348.
    Leonard, S. N., Fitzgerald, R. N., & Bacon, M. (2016). Fold-back: Using emerging technologies to move from quality assurance to quality enhancement. Australasian Journal of Educational Technology, 32(2), 15-31.
    Lin, C. H., & Chen, C. M. (2015). Developing spatial visualization and mental rotation with a digital puzzle game at primary school level. Computers in Human Behavior, 57, 23-40.
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
    Loh, C. S., & Sheng, Y. (2015). Measuring the (dis-) similarity between expert and novice behaviors as serious games analytics. Education and Information Technologies, 20(1), 5-19.
    Loh, C. S., Sheng, Y., & Li, I. H. (2015). Predicting expert–novice performance as serious games analytics with objective-oriented and navigational action sequences. Computers in Human Behavior, 49, 147-155.
    Lord, T. (1990). Enhancing learning in the life sciences through spatial perception. Innovative Higher Education, 15(1), 5–16.
    Lord, T., & Nicely, G. (1997). Does spatial aptitude influence science-math subject preferences of children? Journal of Elementary Science Education, 9(2), 67–81.
    Lubinski, D. (2010). Spatial ability and STEM: a sleeping giant for talent identification and development. Personality and Individual Differences, 49, 344–351
    Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141-152.
    National Research Council. (2006). Learning to think spatially: GIS as a support system in the K–12 curriculum. Washington, DC: National Academies Press.
    Nelson, R. A., & Strachan, I. (2009). Action and puzzle video games prime different speed/accuracy tradeoffs. Perception, 38(11), 1678-1687.
    Ozdemir, G. (2010). Exploring visuospatial thinking in learning about mineralogy: Spatial orientation ability and spatial visualization ability. International Journal of Science and Mathematics Education, 8(4), 737–759.
    Park, G., Lubinski, D. L., & Benbow, C. P. (2010). Recognizing spatial intelligence. Scientific American. Retrieved from http://www.scientificamerican.com/article /recognizing-spatial-intel/.
    Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229–240.
    Price, S., Jewitt, C., & Crescenzi, L. (2015). The role of iPads in pre-school children's mark making development. Computers & Education, 87, 131-141.
    Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 604–614.
    Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied cognitive psychology, 16(1), 97-115.
    Sorby, S. A., & Wysocki, A. F. (2003). Introduction to 3-D spatial visualization: An active approach. Clifton Park, NY: Thomson-Delmar Learning.
    Stieff, M., & Uttal, D. (2015). How Much Can Spatial Training Improve STEM Achievement?. Educational Psychology Review, 27(4), 607-615
    Stubbart, C. I., & Ramaprasad, A. (1990). Conclusion: The evolution of strategic thinking. In A. Huff (Ed.), Mapping Strategic Thought. NY: John Wiley and Sons.
    Tanaka, J. W., Curran, T., & Sheinberg, D. L. (2005). The training and transfer of real-world perceptual expertise. Psychological Science, 16(2), 145-151.
    Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over fifty years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835.
    Wai, J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2010). Accomplishment in science, technology, engineering, and mathematics (STEM) and its relation to STEM educational dose: A 25-year longitudinal study. Journal of Educational Psychology, 102, 860-871.
    Warren, S. J., Dondlinger, M. J., & Barab, S. A. (2008). A MUVE towards PBL writing: Effects of a digital learning environment designed to improve elementary student writing. Journal of Research on Technology and Education, 41, 113–140.
    Yang, J. C., & Chen, S. Y. (2010). Effects of gender differences and spatial abilities within a digital pentominoes game. Computers and Education, 55, 1220-1233.

    QR CODE