簡易檢索 / 詳目顯示

研究生: 余尚運
SHANG-YUN YU
論文名稱: 非線性系統之適應性輸入-輸出回授線性化法
Adaptive Input-Output Feedback Linearization of Nonlinear Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 陳亮光
Liang-Guang Chen
林紀穎
Chi-Ying Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 33
中文關鍵詞: 函數近似法非線性系統回授線性化法
外文關鍵詞: Function Approximation Technique, Feedback Linearization, Nonlinear Systems
相關次數: 點閱:358下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的回授線性法只適用於已知非線性系統,一旦系統存在未知項,則無法進行推導。本論文針對具未知項的非線性系統,提出新的輸入-輸出回授線性化的方法。其係對輸出訊號逐步施以微分,其間只要有未知項出現,即將之集總在一起。如此逐步推導,直至輸入訊號出現。接著經由一巧妙的座標轉換,可得到一線性非時變系統。此時,所有的不確定項,都集中於最後一階之中。該不確定項的變化邊界並不易求得,因此本文以函數近似法來處理之,並配合Lyapunov穩定法則來證明系統的穩定性。電腦模擬結果顯示,本文所提方法確實能對具未知項的非線性系統,進行回授線性化,並且得到良好性能。


    Traditional feedback linearization is only applicable to known nonlinear systems. Once the system has uncertainties, the derivation cannot be feasible. This paper focuses on the input-output feedback linearization of nonlinear systems with uncertainties. The time derivatives of the output functions are taken until the presence of the control signal. During this derivation, all uncertainties will be lumped together. Finally, we can obtain a linear time invariant system through a particular set of coordinate transformations. At this step, all uncertainties are gathered into a term in the last subsystem. Then we may take advantage of the function approximation technique to estimate the uncertainty and prove system stability by the Lyapunov theorem. Simulation results show that the approach is feasible and can give desired system performance.

    摘要 Abstract 誌謝 目錄 圖片索引 第一章 緒論 第二章 輸入-輸出回授線性化法 2.1 已知系統之回授線性化 2.2 未知系統之回授線性化 第三章 新回授線性化法 第四章 系統模擬分析 範例一 撓性關節機械臂(固定參數) 範例二 撓性關節機械臂(時變參數) 範例三 一維磁浮系統 第五章 結論 參考文獻

    [1] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, NJ: Prentice-Hall, 1991.
    [2] C.-T. Chen, Linear System Theory and Design. Oxford University Press; 4th edition, 2012.
    [3] H. K. Khalil, Nonlinear System. 2nd ed., Prentice-Hall, 1996.
    [4] Gilbert Strang, Introduction to Linear Algebra, 3rd edition, Wellesley-Cambridge Press. 2003.
    [5] A. Isidori, Nonlinear control system, Springer-Verlag, 3rd edition, 1995.
    [6] R. Marino and P. Tomei, Nonlinear Control Design, Prentice-Hall Europe, 1995.
    [7] R. Marino, S. Peresada and P. Valigi, “Adaptive input - output linearizing control of induction motors,” IEEE Transactions on Automatic Control, vol. 38, no.1, pp. 208-220, 1993.
    [8] R. Femat, J. A. Ramirez, M. R. Torres, “Robust asymptotic linearization via uncertainty estimation regulation of temperature in a fluidized bed reactor,” Computers and Chemical Engineering, vol. 23, issue 6, pp. 697-708, 1999.
    [9] D. Lee, H. J. Kim and S. Sastry, “Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter,” International Journal of Control, Automation and Systems, vol. 7, issue 3, pp. 491-428, 2009.
    [10] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control, Springer-Verlag, New York, NY, 1999.
    [11] B. Fernandez and J. K. Hedrick, “Control of multivariable non-linear systems by the sliding mode method,” International Journal of Control, vol. 46, issue 3, pp. 1019-1040, 1987.
    [12] Y. S. Chou and W. Wu, “Robust controller design for uncertain nonlinear systems via feedback linearization,” Chemical Engineering Science, vol. 50, issue 9, pp. 1429-1439, 1995.
    [13] Y. S. Chou and W. Wu, “Disturbance compensation for nonlinear processes,” Chemical Engineering Science, vol. 132, issue 1, pp. 151-168, 1995.
    [14] H. R. Karimi, and M. R. J. Motlagh, “Robust feedback linearization control for a non linearizable MIMO nonlinear system in the presence of model uncertainties,” IEEE International Conference on Service Operations and Logistics and Informatics, pp. 965-970, 2006.
    [15] H. K. Khalil, “Adaptive output feedback control of nonlinear systems represented by input-output models”, IEEE Transactions on Automatic Control, vol. 41, no. 2, pp. 177-188, 1996.
    [16] F. Esfandiari and H. K. Khalil, “Output feedback stabilization of fully linearizable systems,” International Journal of Control, vol. 56, issue 5, pp. 1007-1032, 1992.
    [17] S. Oh and H. K. Khalil, “Output feedback stabilization using variable structure control,” International Journal of Control, vol. 62, issue 4, pp. 831-848, 1995.
    [18] A. C. Huang and Y. S. Kuo, “Sliding control of nonlinear system containing time-varying uncertainties with unknown bounds,” International Journal of Control, vol.74, pp. 252-264, 2001.
    [19] 郭有順, 不確定時變系統之適應控制研究, 國立臺灣科技大學機械工程研究所, 博士學位論文, 2002.
    [20] 黃安橋, 適應性控制理論, 國立臺灣科技大學機械工程研究所, 課堂講義, 2014.
    [21] 黃安橋, 非線性控制系統, 國立臺灣科技大學機械工程研究所, 課堂講義, 2013.
    [22] P. C. Chen, A. C. Huang, “Adaptive Multiple-surface Sliding Control of Hydraulic Active Suspension Systems Based on the Function Approximation Technique,” Journal of Vibration and Control, vol. 11, pp.685-706, 2005.
    [23] A. C. Huang, Y. C. Chen, “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE Transactions on Control Systems Technology, vol.12, no. 5 pp. 770–775, 2004.
    [24] 陳元智, 非自主性系統之適應性滑動控制, 國立臺灣科技大學機械工程研究所, 碩士學位論文, 2001.
    [25] A. E. Fitzgerald, C. Kingsley, and Jr., S. D. Umans, Electric Machinery, 5th edition, New York: McGraw-Hill, 1990.
    [26] 高岱千, 磁浮系統之適應控制, 國立臺灣科技大學機械工程研究所, 碩士學位論文, 2005
    [27] J. J. Craig, Introduction to Robotics Mechanics and Control, Prentice Hall, 2005.

    QR CODE