簡易檢索 / 詳目顯示

研究生: 劉淵銘
Yuan-Ming Liu
論文名稱: 奈米精度氣壓-壓電混合驅動之XY-Z三軸長行程定位系統設計與適應性滑動控制
Development of a Pneumatic-Piezoelectric Hybrid Servo XY-Z Positioning System with Large Stroke and High Precision using Adaptive Sliding Control
指導教授: 江茂雄
Mao-Hsiung Chiang
郭中豐
Chung-Feng Kuo
口試委員: 郭振華
Jen-hwa Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 136
中文關鍵詞: 氣壓-壓電伺服XY-Z三軸定位平台氣壓致動器壓電致動器函數近似法適應性滑動控制精密定位
外文關鍵詞: nanometer precision positioning control
相關次數: 點閱:264下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在發展一以無桿氣壓缸(XY軸)及非對稱型單桿氣壓缸(Z軸)結合壓電致動之XY-Z三軸長行程奈米精度伺服定位系統,大行程由氣壓伺服系統進行粗定位,小行程由壓電致動器作進一步的精密補償,其中XY兩軸固定在一起構成XY定位平台,Z軸為獨立軸,作為垂直方向之定位機構。
    本文針對氣壓系統的數學模型進行降階簡化,使氣壓系統為一三階非線性時變系統,且滿足匹配條件。在控制器的部份,本文引用一以函數近似法為基礎之適應性滑動控制器,採用函數近似法近似系統數學模型可克服系統之高度不確定性及時變問題。為避免點對點控制易產生超越量,造成系統振盪影響穩態時間,本文以軌跡定位的方式進行定位控制,同時兼顧暫態及穩態特性。
    本文首先以電腦動態模擬驗證其可行性,最終以實驗實現,包含氣壓-壓電混合驅動之大行程奈米精度軌跡定位控制,氣壓伺服單軸及多軸軌跡追蹤控制,壓電伺服單軸及多軸軌跡追蹤控制。實驗證實此控制系統在單軸控制或多軸同動控制時,皆可成功將X、Y軸定位到位置感測器最佳解析度20奈米、Z軸定位到位置感測器最佳解析度0.1微米,且對各軸皆可達到良好的軌跡追蹤效果。


    The objective of this thesis is to develop a pneumatic-piezoelectric hybrid servo XY-Z three-axial positioning system with large stroke and high precision. In the single axis the pneumatic servo system serves to position in coarse stroke and the piezoelectric(PZT) actuator compensates fine stroke. This multi-axis system is constituted with the combined X- and Y-axis and the separated Z-axis.
    The function approximation technique(FAT) based adaptive sliding controller(ASC) is used to control this servo system. This control strategy can solve the time-varying uncertainties which bounds is unknown by the FAT. Besides, in order to reduce the overshoot in the process of positioning control, the trajectory position control, which combines position control for steady state with trajectory control of transient state, is developed in this study.
    The simulation and experiment are both implemented using the FAT-ASC, including single- and three-axial trajectory control of the pneumatic servo system, single- and three-axial trajectory control of the piezoelectric servo system as well as the large stroke and nanometer accuracy trajectory-position control of the novel pneumatic-piezoelectric hybrid servo system. The simulation and experiment results show that the system can achieve high positioning accuracy and excellent tracking performance.

    摘要 I Abstact II 誌 謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 符號索引XVII 第一章緒論1 1.1 前言1 1.2 文獻回顧1 1.2.1 氣壓系統之文獻回顧1 1.2.2 壓電致動器之文獻回顧3 1.2.3 氣壓-壓電系統之文獻回顧3 1.2.4 控制理論回顧4 1.3 研究動機及本文架構5 1.3.1 研究動機5 1.3.2 本文架構5 第二章系統架構與設備7 2.1 系統架構7 2.2 實驗設備10 2.3 PC-Based 控制系統14 第三章系統動態數學模式建立15 3.1 氣壓伺服系統之數學模型15 3.1.1 比例伺服閥15 3.1.2 質量流率16 3.1.3 氣壓系統之數學模型19 3.1.4 氣壓缸之數學模型23 3.2 壓電致動器之數學模型24 3.3 系統參數鑑別25 第四章控制理論29 4.1 滑動模式控制29 4.1.1 滑動模式控制原理29 4.1.2 滑動模式控制數學推導30 4.2 函數近似法則32 4.2.1 正交函數32 4.2.2 函數近似器33 4.3 適應性滑動控制34 第五章控制器設計37 5.1氣壓系統數學模型降階38 5.2 氣壓伺服控制器設計40 5.3 壓電伺服控制器設計45 5.4 單軸解耦合48 5.5 控制參數49 第六章模擬及實驗結果與討論51 6.1 氣壓系統及壓電致動器定位控制模擬52 6.1.1 氣壓系統定位控制模擬52 6.1.2 壓電致動器定位控制模擬54 6.1.3 氣壓-壓電混合定位控制模擬55 6.2 單軸氣壓伺服控制實驗56 6.2.1 氣壓系統定位實驗56 6.2.2 氣壓系統軌跡追蹤實驗70 6.3 壓電致動器伺服控制實驗74 6.3.1 壓電致動器定位實驗74 6.3.2 壓電致動器軌跡追蹤實驗77 6.4 單軸氣壓-壓電混合定位控制實驗79 6.5 強健性測試實驗88 6.6 雙軸同動伺服控制實驗91 6.6.1 氣壓-壓電XY雙軸同動精密定位實驗91 6.6.2 氣壓XY雙軸同動軌跡追蹤實驗101 6.6.3 壓電致動器XY雙軸同動軌跡追蹤實驗107 6.7 三軸同動伺服控制實驗112 6.7.1 XY-Z三軸同動精密定位實驗112 6.7.2 氣壓XY-Z三軸同動軌跡追蹤實驗121 6.7.3 壓電致動器XY-Z三軸同動軌跡追蹤實驗126 第七章結論與建議130 7.1 結論130 7.2 建議131 參考文獻132 作者簡介136

    [ 1 ]Moore, P. and Pu, J.S.,”Pneumatic servo actuator technology,” Actuator Techonlogy: Current Practice and New Developments., IEE Colloquium, pp. 3/1-3/6 1996.
    [ 2 ]楊文賢, “長行程奈米精度之氣壓-壓電混合精密伺服X-YZ三軸定位系統設計與智慧型控制,“ 國立台灣科技大學自動化及控制研究所碩士論文, 2006.
    [ 3 ]Shearer, J. J., “Continuous Control of Motion with Compressed Air,” ScD, Thesis, Massachusetts Institute of Technology, 1954.
    [ 4 ]Wang, J., Wang, D.J.D., Moore, P.R. and Pu, J., “Modelling study, analysis and robust servo control of pneumatic cylinder actuator systems,” Control Theory and Applications, IEE Proceedings-Vol. 148, Issue 1, pp. 35 – 42, 2001.
    [ 5 ]Shu, N., Bone, G.M., “Development of a nonlinear dynamic model for a servo pneumatic positioning system,” Mechatronics and Automation, IEEE International Conference, Vol. 1, pp.43 - 48 2005.
    [ 6 ]Drakunov, S., Hanchin, G. D., Su, W. C., ÖZGÜNER, Ü., “Nonlinear Control of a Rodless Pneumatic Servoactuator, or Sliding Modes versus Coulomb Friction,” Automatica, Vol.33, pp. 1401-1408, 1997.
    [ 7 ]Nouri, B.M.Y., Al-Bender, F., Swevers, J., Vanherek, P., van Brussel, H., “Modelling a pneumatic servo positioning system with friction,” american control coonference, 2000.
    [ 8 ]Noritsugu, T., “Electro-Pneumatic Feedback Speed Control of a Pneumatic Motor. Part I : With an Electro-Pneumatic Proportional Valve,” Journal of Fluid Control, pp. 17-37, 1987.
    [ 9 ]Noritsugu, T., “Development of PWM Mode Electro-Pneumatic Servomechanism. Part II : Position Control of a Pneumatic Cylinder,” Journal of Fluid Control, Vol.66, pp. 65-80, 1987.
    [ 10 ]Song, J., Ishida, Y., “A Robust Sliding Mode Control for Pneumatic Servo System,” International Journal of Engineering Science, Vol.35, No.8, pp. 711-723, June 1997.
    [ 11 ]Shu, N., Bone, G.M., “High steady-state accuracy pneumatic servo positioning system with PVA/PV control and friction compensation,” Robotics and Automation, IEEE International Conference, Vol. 3, pp. 2824 – 2829, 2002.
    [ 12 ]白凱仁, “伺服氣壓控制系統設計及精密定位之研究,” 國立成功大學機械工程研究所 碩士論文, 2005.
    [ 13 ]Shih, M.C., Pai, K.R., “Nanoaccuracy Position Control of A Pneumatic Cylinder Driven Table,” International Journal of JSME, Series C, Vol.46, No.3 pp. 1062-1068, 2003.
    [ 14 ]張孝陽, “三軸伺服氣壓運動控制之研究,” 國立成功大學機械工程研究所 碩士論文, 2004.
    [ 15 ]Chen, C.K., Hwang, J., “PD-type iterative learning control for trajectory tracking of a pneumatic X-Y table with disturbances,” Robotics and Automation IEEE International Conference, Vol 4, pp.3500 – 3505, 2004.
    [ 16 ]Song, Q., Liu, F., “Improved Control of a Pneumatic Actuator Pulsed with PWM,” Mechatronic and Embedded Systems and Applications, Proceedings of the 2nd IEEE/ASME International Conference, pp. 1 – 4, 2006.
    [ 17 ]Croft, D., Shedd, G., Devasia, S., "Creep,hysteresis,and vibration compensation for piezoactuators : Atomic Force Microscopy Application," Proceedings of the 2000 American Control Conference, pp.2123-2138, 2000.
    [ 18 ]Ge, P., Jouaneh, M.,"Tracking control of a piezoceramic actuator," IEEE Transactions on control systems technology, Vol. 4, pp. 209-216, 1996.
    [ 19 ]陳信達, "壓電致動器之適應控制", 國立台灣科技大學機械工程所碩士論文, 2004.
    [ 20 ]Ru, C.H., Sun, L., Kong, M.X., “Adaptive inverse control for piezoelectric actuator based on hysteresis model,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vol 5, pp. 3189 - 3193 2005.
    [ 21 ]Shen, G., Wei, Y., "Study on Nonlinear Model of Piezoelectric Actuator nand Accurate Positioning Control Strategy," IEEE Vol. 2, 21-23, pp. 8356 – 8360, 2006.
    [ 22 ]Oboe, R., Beghi, A., and Murari, B., "Modeling and control of a dual stage actuator hard disk drive with piezoelectric secondary actuator," Advanced Intelligent Mechatronics, IEEE/ASME International Conference on, pp.138 – 143, 1999.
    [ 23 ]Evans, R.B., Griesbach, J.S., and Messner, W.C., "Piezoelectric microactuator for dual stage control," Magnetics, IEEE Transactions on , Vol. 35, pp. 977 – 982, 1999.
    [ 24 ]Al-Mamun, A., Lee, T.H., Pan Ling, and Suthasun, T., "Internal model control for the dual-stage actuator in hard disk drives," Industrial Electronics Society, IEEE 2002 28th Annual Conference, Vol. 2, pp.1606 – 1611, 2002.
    [ 25 ]陳承賢, “線性步進馬達結合壓電制動器之次微米定位控制,“ 國立中興大學機械工程研究所碩士論文, 2000.
    [ 26 ]Chiang, M.H., Chen C.C., Tsou, T.N., “Large stroke and high precision pneumatic- piezoelectric hybrid positioning control using adaptive discrete variable structure control, Mechatronics,” Vol. 15, Issue 5, pp.523-545, June 2005.
    [ 27 ]Chiang, M.H., Chen, Y.N., Chen C.Y., “Development of Servo Pneumatic-Piezoelectric X-Y Hybrid Positioning Systems with High Response, Large Stroke and Nanometer Accuracy,” The 5th International Fluid Power Conference (5. IFK), Aachen, Germany, 2006.
    [ 28 ]Chiang, M.H., Chen, C.C., Huang, C.C. and Chen, J.Y., “Development of an Intelliegnt Pneumatic-Piezoelectric Hybrid Servo Positioning System with High Response, Large Stroke and Nanometer Accuracy,” The 6th JFPS International Symposium of Fluid Power, Tsukuba, Japan, 2005.
    [ 29 ]Utkin, V.I., “Survey Paper Variable Structure Systems with Sliding Modes,” IEEE Transactions on Automatic Control, Vol. AC-22 pp. 212-222, 1977.
    [ 30 ]Slotine, J.-J.E., Li, W., “Applied Nonlinear Control,” Prentice Hall, 1991.
    [ 31 ]Slotine, J.-J.E., “Sliding controller design for non-linear systems,” International Journal of Control, Vol. 40, pp. 421-434 1984.
    [ 32 ]Huang, A.C., Kuo, Y.S., “Sliding Control of Nonlinear Systems Containing Time-varying Uncertainties with Unknown Bounds,” International Journal of Control, Vol. 74, pp. 252-264, 2001.
    [ 33 ]Huang, A.C., Chen, Y.C., “Adaptive Sliding Control for Single-Link Flexible-Joint Robot with Mismatched Uncertainties,” IEEE Transactions on Control Systems Technology, vol. 12, pp.770-775, 2004.
    [ 34 ]Chen, P.C., Huang, A.C., “Adaptive Sliding Control of Active Suspension Systems with Uncertain Hydraulic Actuator Dynamics,” Vehicle System Dynamics, vol. 44, pp357-368, 2006.
    [ 35 ]Huang, A.C., Chen, Y.C., “Adaptive Multiple-Surface Sliding Control for Non-Autonomous Systems with Mismatched Uncertainties,” Automatica, vol. 40, pp.1939-1945, 2004.
    [ 36 ]Shih, M.C., Ma, M.A., “Position control of a pneumatic cylinder using fuzzy PWM control method,” Mechatronics Vol. 8, pp. 241-253, 1998.
    [ 37 ]Su, T.C., Kuo, C.Y., “Variable structure control of a rodless pneumatic servoactuator with discontinuous sliding surfaces,” Proceedings of the 2000 American Control Conference, pp.1617-1621, 2000.
    [ 38 ]Festo, “Datasheet of DGPL type Rodless Cylinder”.
    [ 39 ]Festo, “Datasheet DZH type Cylinder”.
    [ 40 ]Festo, “Datasheet MYPE5 type servo valve”.
    [ 41 ]Piezomechanik, “Datasheet of PST type Piezoelectric”.
    [ 42 ]Agilent, “Datasheet of HCTL-2032 Quadrature Decoder”.
    [ 43 ]邱正展,”工業自調式控制器之研究,” 國立台灣科技大學機械工程系碩士論文, 2005.
    [ 44 ]郭春彥, ”無桿氣壓缸之非線性動態分析與伺服控制,” 國立中興大學電機工程學碩士論文, 1997.
    [ 45 ]McCloy, D., Martin, H.R., ”Control of Fluid Power”,2ed., Ellis Horwood Limited, 1980.
    [ 46 ]李明隆, ”改良式距離基礎之模糊滑動模式控制應用於長行程次微米之氣壓-壓電混何精密伺服定位平台模擬與控制,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2004
    [ 47 ]黃基育, “應用自我調整之適應控制於運動控制系統之摩擦力補償之研究,” 中華大學電機工程學系碩士論文, 2000
    [ 48 ]鄒丹妮, ”應用適應性可變結構控制於氣壓-壓電精密定位伺服系統之研究,” 國立台灣科技大學工程技術所自動化及控制學程碩士論文, 2001.
    [ 49 ]黃安橋, “非線性控制系統上課講義,” 國立台灣科技大學機械工程所, 2006.
    [ 50 ]黃安橋, “適應性控制理論上課講義,” 國立台灣科技大學機械工程所, 2006.
    [ 51 ]郭有順, “不確定時變系統之適應控制研究,” 國立台灣科技大學機械工程所, 博士學位論文, 2002.
    [ 52 ]Hung, J.Y., Gao, W., Hung, J.C., “Variable structure control: a survey, ” Industrial Electronics, IEEE Transactions on, Vol. 40, pp.2 – 22, 1993.
    [ 53 ]江茂雄, “控制系統分析與設計上課教材,” 國立台灣科技大學自動化及控制研究所, 2005

    QR CODE