簡易檢索 / 詳目顯示

研究生: 王棕賢
Zong-Xian Wang
論文名稱: 壓電電極配置法於智慧型結構之彎曲/扭轉多模態主動振動控制
Bending-Torsion Multimode Vibration Control of Smart Structures Using Piezoelectric Electrode Configuration
指導教授: 林紀穎
Chi-Ying Lin
口試委員: 黃育熙
Yu-Hsi Huang
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 143
中文關鍵詞: 撓性結構彎曲模態扭轉模態壓電致動器電極配置多模態振動控制控制輸入疊加法電極切換控制法
外文關鍵詞: flexible structure, bending mode, torsion mode, piezoelectric actuator, electrode configuration, multimodal vibration control, superposition control, electrode switching control
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 彎曲模態與扭轉模態是撓性結構中主要的兩種振動模態,由於其模態振型有顯著差異,既有研究大多僅針對彎曲模態進行進階振動控制探討、或是以多組致動器配置法與單一致動器斜交角(Skew Angle)配置法進行激發與抑制扭轉振動響應探討;目前能夠僅以單一致動器同時抑制這兩種振動響應、並依隨機出現之任一種模態進行有效抑制之相關研究仍是付之闕如。本論文為基於壓電電極配置法就智慧撓性樑之彎曲模態與扭轉模態開發新型多模態主動振動控制法之研究探討。為分析不同電極配置模式於欲探討模態下之激振效果,本研究首先透過有限元素分析軟體進行致動效能分析,證實了全電極模式與切割電極模式能夠各自有效地激發懸臂樑之彎曲模態與扭轉模態。本研究以正位置回授控制作為單模態主動振動控制之基本控制架構作為基礎,接著基於電極配置法提出兩種全新的多模態主動振動控制架構,分別為:(1)控制輸入疊加法;與(2)電極切換控制法。控制輸入疊加法係根據疊加原理將彎曲與扭轉模態之控制輸入疊加作為實際給予壓電致動器之控制輸入,進而達到同時抑制此兩種模態之共振行為。至於電極切換控制法則是結合了單模態主動振動控制之基本架構與本研究所開發之電極切換配置模組,並透過設計之電極切換控制器在任意時間根據結構系統的工作環境與狀態即時切換對應模態的控制律與硬體上的電極配置模式。本研究亦加入一平滑切換函數進行控制器切換,並分析不同的平滑切換函數與其設計參數對結構系統控制效能之差異。透過多模態主動振動控制實驗,結果證實本研究基於壓電電極配置法所開發之新型多模態主動振動控制架構能夠提供良好的彎曲/扭轉多模態主動振動控制效能。本文所提之新型主動振動控制架構應用甚廣,除了一般結構系統外,亦可應用於撓性機械手臂定位控制或工具機加工振顫抑制等撓性結構之關鍵技術研發、大幅提升系統效能與經濟效益。


    Bending mode and torsion mode are two important vibration modes in flexible structures. Due to their inherently-different mode shapes, most existing research has focused either on active control of bending mode vibrations using advanced controls, or on torsion mode excitation and suppression using multiple actuators and sensors placement and control or using a single actuator with skew angle configuration. Unfortunately, research that merely applies a single actuator to address both vibration modes is still lacking. This thesis presents novel bending-torsion vibration suppression control methods of smart flexible beam based on piezoelectric electrode configuration. Modal analysis shows that applying the electrode configurations including “full electrode configuration” and “segmented electrode configuration” can effectively enhance the excitation efficiency of a piezoelectric cantilever beam at bending mode and torsion mode frequencies. Using the above designed electrode configurations, this study proposes two novel multimodal vibration control schemes integrated with positive position feedback (PPF) control as fundamental controller to address the coexisting bending-torsion vibrations, i.e., (1) Superposition Control and (2) Electrode Switching Control. The first control scheme that superposes control inputs of bending mode PPF controller and torsion mode PPF controller has an extremely beneficial effect on simultaneous suppression of these two vibrations. The electrode switching control scheme, on the other hand, is developed with our designed electrode configuration switching circuit module and fundamental PPF control algorithms to handle real-life examples of time-varying single modal vibrations (either bending mode or torsion mode) in real-time. Comparative experiments and analysis demonstrate that the proposed new multimodal vibration control schemes can effectively suppress simultaneous bending-torsion vibrations and time-varying bending/torsion vibrations. The proposed multimodal vibration control schemes have a great advantage of saving extra costs of used actuators and may be applied to a broad range of applications in which the discussed structural system contains both bending mode and non-bending mode vibrations.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 符號參照表 XIII 第一章 緒論 1 第二章 主動結構系統 7 2.1 撓性結構 7 2.1.1 樑理論(Beam Theory) 7 2.1.2 懸臂樑彎曲模態分析 9 2.1.3 懸臂樑扭轉模態分析 12 2.1.4 懸臂樑尺寸與材料設定 14 2.2 壓電元件 15 2.2.1 壓電效應(Piezoelectric Effect) 15 2.2.2 本構方程式(Constitutive Equation) 16 2.3 主動結構系統 19 2.3.1 感測器 19 2.3.2 致動器 32 2.3.3 有限元素分析 (Finite Element Analysis) 34 第三章 電極配置法 39 3.1 電極配置架構 39 3.1.1 電極配置原理 39 3.1.2 電極切割方法 40 3.1.3 電極配置切換模組 (Electrode Switching Module) 42 3.2 基於電極配置之致動器致動效能分析 46 3.2.1 電極配置模式分析 46 3.2.2 有限元素分析 47 3.2.3 致動效能分析結果 49 3.3 模態激振效能實驗驗證 52 3.3.1 電子斑點干涉術(Electronic Speckle Pattern Interferometry, ESPI) 52 3.3.2 實驗結果 54 第四章 控制架構 58 4.1 單模態主動振動控制 58 4.1.1 正位置回授控制器(Positive position feedback, PPF) 58 4.1.2 單模態主動振動控制系統架構 62 4.2 新型多模態主動振動控制 64 4.2.1 控制輸入疊加法 64 4.2.2 電極切換控制法 67 4.2.3 多模態主動振動控制方法之比較 72 第五章 實驗結果與討論 74 5.1 實驗架設 74 5.1.1 感測系統 74 5.1.2 致動系統 76 5.1.3 干擾激振裝置 78 5.1.4 控制系統 80 5.2 單模態主動振動控制 83 5.2.1 實驗設計 83 5.2.2 實驗結果與討論 85 5.3多模態主動振動控制 106 5.3.1 控制輸入疊加法 106 5.3.2 電極切換控制法 109 第六章 結論與未來目標 119 6.1 結論 119 6.2 未來目標 120 參考文獻 121 附錄 125

    [1] 工具機主軸。檢自https://www.cnclathing.com/guide/how-to-reduce-chatter-in-cnc-milling-tips-for-minimizing-machining-vibration-cnclathing.
    [2] 輕量型機械手臂。檢自https://www.trossenrobotics.com/viperx-300-robot-arm.aspx.
    [3] 飛行器機翼。檢自https://www.azom.com/article.aspx?ArticleID=12117.
    [4] A. Preumont, Vibration control of active structures: an introduction. Springer, 2018.
    [5] M. Balas, "Feedback control of flexible systems," IEEE Transactions on Automatic Control, vol. 23, no. 4, pp. 673-679, 1978.
    [6] M. J. Balas, "Active control of flexible systems," Journal of Optimization theory and Applications, vol. 25, no. 3, pp. 415-436, 1978.
    [7] J. Aubrun, "Theory of the control of structures by low-authority controllers," Journal of Guidance and Control, vol. 3, no. 5, pp. 444-451, 1980.
    [8] C. Goh and T. Caughey, "On the stability problem caused by finite actuator dynamics in the collocated control of large space structures," International Journal of Control, vol. 41, no. 3, pp. 787-802, 1985.
    [9] R. Clark, "Accounting for out-of-bandwidth modes in the assumed modes approach: Implications on colocated output feedback control," 1997.
    [10] S. R. Moheimani, "Minimizing the effect of out-of-bandwidth dynamics in the models of reverberant systems that arise in modal analysis: implications on spatial H∞ control," Automatica, vol. 36, no. 7, pp. 1023-1031, 2000.
    [11] O. J. Aldraihem and R. C. Wetherhold, "Mechanics and control of coupled bending and twisting vibration of laminated beams," Smart materials and structures, vol. 6, no. 2, p. 123, 1997.
    [12] J.-H. Han, K.-H. Rew, and I. Lee, "An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor," Smart Materials and Structures, vol. 6, no. 5, p. 549, 1997.
    [13] P. Pai, B. Wen, A. Naser, and M. Schulz, "Structural vibration control using PZT patches and non-linear phenomena," Journal of Sound and vibration, vol. 215, no. 2, pp. 273-296, 1998.
    [14] H. Kioua and S. Mirza, "Piezoelectric induced bending and twisting of laminated composite shallow shells," Smart Materials and Structures, vol. 9, no. 4, p. 476, 2000.
    [15] S. Wang, K. Tai, and S. Quek, "Topology optimization of piezoelectric sensors/actuators for torsional vibration control of composite plates," Smart materials and Structures, vol. 15, no. 2, p. 253, 2006.
    [16] Y. Lin and S. V. Venna, "A novel method for piezoelectric transducers placement for passive vibration control of geometrically non-linear structures," Sensor Review, vol. 28, no. 3, pp. 233-241, 2008.
    [17] F. Botta and F. Toccaceli, "Piezoelectric plates distribution for active control of torsional vibrations," in Actuators, 2018, vol. 7, no. 2: Multidisciplinary Digital Publishing Institute, p. 23.
    [18] C. K. Lee and F. Moon, "Laminated piezopolymer plates for torsion and bending sensors and actuators," The Journal of the Acoustical Society of America, vol. 85, no. 6, pp. 2432-2439, 1989.
    [19] W.-S. Hwang, H. C. Park, and W. Hwang, "Vibration control of a laminated plate with piezoelectric sensor/actuator: finite element formulation and modal analysis," Journal of Intelligent Material Systems and Structures, vol. 4, no. 3, pp. 317-329, 1993.
    [20] R. Barren, "Active plate and missile wing development using directionally attached piezoelectric elements," AIAA journal, vol. 32, no. 3, pp. 601-609, 1994.
    [21] I. Shen, "Bending and torsional vibration control of composite beams through intelligent constrained-layer damping treatments," Smart Materials and Structures, vol. 4, no. 4, p. 340, 1995.
    [22] H. Tzou, R. Ye, and J. Ding, "A new X-actuator design for dual bending/twisting control of wings," Journal of sound and vibration, vol. 241, no. 2, pp. 271-281, 2001.
    [23] Z.-c. Qiu, H.-x. Wu, and D. Zhang, "Experimental researches on sliding mode active vibration control of flexible piezoelectric cantilever plate integrated gyroscope," Thin-Walled Structures, vol. 47, no. 8-9, pp. 836-846, 2009.
    [24] X. Wang, W. Zhou, Z. Wu, and W. Wu, "Optimal unimorph and bimorph configurations of piezocomposite actuators for bending and twisting vibration control of plate structures," Journal of Intelligent Material Systems and Structures, vol. 29, no. 8, pp. 1685-1696, 2018.
    [25] J. Fanson and T. K. Caughey, "Positive position feedback control for large space structures," AIAA journal, vol. 28, no. 4, pp. 717-724, 1990.
    [26] R. L. Kosut, H. Salzwedel, and A. Emami-Naeini, "Robust control of flexible spacecraft," Journal of Guidance, Control, and Dynamics, vol. 6, no. 2, pp. 104-111, 1983.
    [27] Y.-R. Hu and A. Ng, "Active robust vibration control of flexible structures," Journal of sound and vibration, vol. 288, no. 1-2, pp. 43-56, 2005.
    [28] H. Fang et al., "High-precision adaptive control of large reflector surface," Earth Science, vol. 2008, 2008.
    [29] M. D. Symans and S. W. Kelly, "Fuzzy logic control of bridge structures using intelligent semi‐active seismic isolation systems," Earthquake Engineering & Structural Dynamics, vol. 28, no. 1, pp. 37-60, 1999.
    [30] J. Lin and W.-Z. Liu, "Experimental evaluation of a piezoelectric vibration absorber using a simplified fuzzy controller in a cantilever beam," Journal of sound and vibration, vol. 296, no. 3, pp. 567-582, 2006.
    [31] J.-j. Wei, Z.-c. Qiu, and Y.-c. Wang, "Experimental comparison research on active vibration control for flexible piezoelectric manipulator using fuzzy controller," Journal of Intelligent and Robotic Systems, vol. 59, no. 1, pp. 31-56, 2010.
    [32] L. Meirovitch, Elements of vibration analysis. McGraw-Hill Science, Engineering & Mathematics, 1975.
    [33] A. Krushynska, V. Meleshko, C.-C. Ma, and Y.-H. Huang, "Mode excitation efficiency for contour vibrations of piezoelectric resonators," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 10, pp. 2222-2238, 2011.
    [34] Y.-H. Huang, "Electromechanical coupling efficiency of transverse vibration in piezoelectric plates according to electrode configuration," Journal of the Chinese institute of engineers, vol. 36, no. 7, pp. 842-855, 2013.
    [35] C.-Y. Lin, Y.-H. Huang, and W.-T. Chen, "Multimodal suppression of vibration in smart flexible beam using piezoelectric electrode-based switching control," Mechatronics, vol. 53, pp. 152-167, 2018.
    [36] R. C. Hibbeler and S. Fan, Statics and mechanics of materials. Prentice Hall Upper Saddle River, 2004.
    [37] 周卓明, "壓電力學, 全華科技圖書股份有限公司," 2003, 2004.
    [38] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, "IEEE standard on piezoelectricity," ed: Society, 1988.
    [39] S. R. Moheimani and A. J. Fleming, Piezoelectric transducers for vibration control and damping. Springer Science & Business Media, 2006.
    [40] R. L. Clark, R. A. Burdisso, and C. R. Fuller, "Design approaches for shaping polyvinylidene fluoride sensors in active structural acoustic control (ASAC)," Journal of intelligent material systems and structures, vol. 4, no. 3, pp. 354-365, 1993.
    [41] B.-T. Wang and C.-C. Wang, "Feasibility analysis of using piezoceramic transducers for cantilever beam modal testing," Smart Materials and Structures, vol. 6, no. 1, p. 106, 1997.
    [42] H. Kawai, "The piezoelectricity of poly (vinylidene fluoride)," Japanese journal of applied physics, vol. 8, no. 7, p. 975, 1969.
    [43] 壓電薄膜感測器。檢自https://www.metrolog.net/files/ldt1028k_en_metrolog.pdf.
    [44] A. Freddi, G. Olmi, and L. Cristofolini, "Experimental stress analysis for materials and structures," Stress analysis models for developing design methodologies. Series in solid and structural mechanics, vol. 1, 2015.
    [45] R. M. Jones, Mechanics of composite materials. CRC press, 1998.
    [46] 康淵 and 陳信吉, ANSYS 入門 (修訂三版). 全華, 2006.
    [47] L. APC International, Piezoelectric ceramics: principles and applications. APC International, 2002.
    [48] 固態繼電器。檢自https://www.phidgets.com/docs/Solid_State_Relay_Primer.
    [49] D. J. Inman, Vibration with control. Wiley Online Library, 2006.
    [50] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM, 1994.
    [51] G. Rizzoni and J. Kearns, Principles and applications of electrical engineering. McGraw-Hill (London), 2003.
    [52] R. L. Norton, Cam design and manufacturing handbook. Industrial Press Inc., 2002.
    [53] 三軸應變規型錄。檢自https://br.omega.com/omegaFiles/pressure/pdf/SGD_CORNERROSETTE.pdf.
    [54] 電橋盒型錄。檢自https://www.kyowa-ei.com/eng/file/download/support/download/catalog/db-350a_catalog_e2019_01_eng.pdf.
    [55] 應變放大器型錄。檢自https://www.kyowa-ei.com/eng/file/download/support/download/catalog/wga-100b_catalog_e2019_01_eng.pdf.
    [56] 壓電陶瓷型錄。檢自https://www.americanpiezo.com/apc-materials/physical-piezoelectric-properties.html.
    [57] 壓電放大器型錄。檢自https://www.manualslib.com/manual/918085/Nf-Hsa4012.html#product-HSA4051.
    [58] 資料擷取卡型錄。檢自https://www.artisantg.com/info/NI_PXI6052E_Manual.pdf.
    [59] 資料擷取卡外觀。檢自https://www.artisantg.com/TestMeasurement/52310-2/National-Instruments-PCI-6052E-16-Channel-Analog-Input-Multifunction-DAQ.
    [60] 接線盒型錄。檢自https://www.artisantg.com/info/NI_SCB68_User_Manual.pdf.
    [61] 接線盒外觀。檢自https://www.artisantg.com/TestMeasurement/49476-1/National-Instruments-SCB-68-Shielded-68-Pin-I-O-Connector-Block.
    [62] 黃泰榮, "積層製造材料與噴頭壓電陶瓷之異向性力學材料常數量測," 國立台灣科技大學機械工程系碩士學位論文, 104年6月.

    無法下載圖示 全文公開日期 2025/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2025/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE