簡易檢索 / 詳目顯示

研究生: 江秉燃
Ping-Jan Chiang
論文名稱: 氮化鎵元件透明導電層的製程改進與特性量測
Process Improvement and Characterization of the Transparent Conducting Layer of GaN Devices
指導教授: 葉秉慧
Pinghui Sophia Yeh
口試委員: 黃柏仁
Bohr-Ran Huang
趙良君
Liang -Chiun Chao
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 80
中文關鍵詞: 氮化鎵發光二極體製程蕭基接觸
外文關鍵詞: GaN, LED, Manufacturing, Schottky contact
相關次數: 點閱:200下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵材料系統被廣泛的應用於高功率發光二極體。其中很重要的一部分在於透明導電層的製作。ITO (Indium-tin-oxide)是廣泛被使用的材料之一,應用於氮化鎵系統的材料之中,卻出現了嚴重的問題,P型氮化鎵的功函數為7.5eV,ITO的功函數約為4.8eV,導致產生了蕭特基現象,使得元件本身的啟動電壓居高不下;另一個迫切需要解決的問題則是元件總電阻難以降低,高電阻所造成的問題,會使得高功率的元件產生熱損耗,導致效率降低。工業界已解決此問題但不會公開,學術界還需自行研發。
    我們嘗試不同製程,利用傳輸線元件做電特性量測,將ITO於高溫退火製程中所通入的氣體由N2改變為CDA(Clean dry air),並在ITO與P型氮化鎵中加入了氧化鎳接合層,以降低ITO與P型氮化鎵的接觸電阻以及啟動電壓,並且利用不同的方式鍍製ITO,以降低啟動電壓。
    利用傳輸線實驗的結果,我們將元件的製程進行改良,製作出來的發光二極體的啟動電壓由原來的5.5V降低至2.6V,總電阻由40Ω降低至10.4Ω。


    GaN material system is used for high power light emitting diodes (LED). One of the most important processes is the fabrication of a transparent conducting layer (TCL). Indium-tin-oxide (ITO) is a generally used material for TCL, however, ITO and p-type GaN have quite different work functions: 4.8eV and 7.5eV respectively. If we use ITO directly on p-type GaN, it would result in Schottky contact, leading to high turn-on voltage. In addition, to reduce the series resistance is an urgent issue, because high series resistance in high power device causes high waste heat and low power efficiency. LED manufacturers have found their solutions internally. We need to develop our own process.

    In this research, we carried out different ITO processes, and used transmission line model to characterize the electrical properties of fabricated devices. The experiments include: change annealing gas from N2 to CDA (Clean dry air), add NiO layer between ITO and p type GaN, and deposit ITO layer by different means.

    In result, we reduce the series resistance from 40Ω to 10.4Ω, and the turn-on voltage from 5.5V to 2.6V.

    致謝 I 中文摘要 II ABSTRACT III 目錄 IV 圖片目錄 VII 表格目錄 XI 第一章. 緒論 1 1.1 高功率LED發展及演進 1 1.2 氮化鎵電流擴散層發展與回顧 4 1.3 研究動機 8 第二章. 原理介紹 9 2.1 發光二極體原理 9 2.1.1. 二極體發光理論 9 2.1.2. 二極體電路模型 13 2.2 金屬與半導體接觸 15 2.3 矩形傳輸線模型理論 23 第三章. 製程及儀器介紹 26 3.1 量測儀器介紹 26 3.1.1 L-I& I-V量測系統 26 3.1.2 太陽光源模擬器及I-V量測系統 27 3.1.3 光激發螢光量測系統(Photoluminescence, PL) 29 3.1.4 霍爾量測系統 30 3.2 元件製程 32 3.2.1 發光二極體製程 32 3.2.2 傳輸線元件製程 37 3.2.3 霍爾量測元件製程 39 第四章. 元件製程修改及改善方法 40 4.1 降低總電阻 40 4.1.1 發光二極體電阻分析 40 4.1.2 以乾燥空氣CDA及氮氣做為ITO的退火氣體影響 46 4.2 降低高啟動電壓 53 4.2.1 高啟動電壓原因分析 53 4.2.2 以氧化鎳(NiO)做為ITO及P型氮化鎵的接合層 56 4.2.3 利用不同的方式製備ITO薄膜 61 4.3 發光二極體元件量測結果 67 第五章. 結論與未來展望 71 參考文獻 77

    [1]M. G. Craford, N. Holonyak, Jr., and F. A. Kish, “In pursuit of the ultimate lamp,” Sci. Amer. (International Edition), vol. 284, no. 2, pp.62–67, Feb. (2001)

    [2]M. Ikeda, K. Nakano, Y. Mori, K. Kaneko, and N. Watanabe, “MOCVD growth of AlGaInP at atmospheric pressure using triethyl-metalsand phosphine,” J. Cryst. Growth, vol. 77, no. 1–3, pp. 380–385,Sep. (1986).

    [3]Fletcher R. M., Kuo C., Osentowski T. D., and Robbins V. M. “Light-emitting diode with an electrically conductive window” US Patent 5,008,718 (1991)

    [4]Chang S. J., Chang C. S., Su Y. K., Chang P. T., Wu Y. R., Huang K. H. and Chen T. P. “AlGaInP multiquantum well light-emitting diodes” IEE Proc. Optoelectronics 144, 1 (1997)

    [5]M. R. Krames, O. B. Shchekin, Regina M.M., G. O. Mueller, L. Zhou,G.Harbers, M. G.Craford, “Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting” J. Display Tec, VOL. 3, NO. 2, June (2007)

    [6]Nakamura, S., Pearton, S. and Fasol, G. “The Blue Laser Diode”, The Complete Story. Berlin: Springer. (2000).

    [7]Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I. “P-type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation”, Jpn. J. Appl. Phys. Part 2-Letters, Vol.28, pp L2112-L2114.(1989).

    [8]Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N. “Thermal annealing effects on p-Type Mg-doped GaN films”. Journal of Appl. Phys., Vol. 31, L139. (1992).

    [9]Nakamura, S., Senoh, M. and Mukia, T.“P-GaN/n-InGaN/GaN Double-heterostructure Blue-light-emitting Diodes”. J. Appl. Phys., Vol. 32, p. L8. (1993).
    [10]Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S. High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. J. Appl. Phys., Vol. 2, 34(7A):797-9, (1995).

    [11]R. Singh, J. H. Morgan, K. Rajkanan, and D. E. Brodie. Optimization of Oxide-Semiconductor/Base-Semiconductor Solar Cells. IEEE Trans Electron Devices ED-27, 656, (1980).

    [12]T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren. Indium tin oxide contacts to gallium nitride optoelectronic devices. J. Appl. Phys., Vol. 74, No. 26, (1999).

    [13]D. E. Eastman. Photoelectric Work Functions of Transition, Rare-Earth, and Noble Metals. Phys. Rev. B 2, 1–2, (1970).

    [14]L. C. Chen, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih.F. R. Chen, J. J. Kai, L. Chang, “Oxidized Ni/Pt and Ni/Au ohmic contacts to p-type GaN”. Appl. Phys. Lett, Vol. 76, No. 25, pp. 3703–3705, (2000).

    [15]S. M. Pan, R. C.Tu, Y. M. Fan, R. C.Yeh, J. T. Hsu. Enhanced Output Power of InGaN–GaN Light-Emitting Diodes With High Transparency Nickel Oxide Indium Tin Oxide Ohmic Contacts. IEEE Photonics Tec. Lett., VOL. 15, NO. 5, 646. (2003)

    [16]J.-S. Jang, D. Kim, and T.-Y.Seong, “Low turn-on voltage and series
    resistance of polarization-induced InGaN–GaN LEDs by using p-InGaN/p-GaN superlattice,” IEEE Photon. Technol. Lett., vol. 18,
    no. 14, pp. 1536–1538, Jul. (2006).

    [17]J.-S. Jang, S.-J.Sohn, D. Kim, and T.-Y. Seong, “Formation of low resistance transparent Ni/Au ohmic contacts to a polarization field induced p-InGaN/GaN superlattice,” Semicond. Sci. Technol., vol. 21,no. 5, pp. L37–L39, May (2006).
    [18]E. Fred. Schubert, Light-emitting Diodes Second edition, Cambridge University Press. (2006).

    [19]L. A. Coldren, S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley & Sons, Inc. (1995).

    [20]Adel S. Sedra, Kenneth C. Smith Microelectronic circuits, Oxford University Press. (2004).

    [21]S. M. Sze, Kwok K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Inc.

    [22]陳隆建, 發光二極體之原理與製程, 全華圖書股份有限公司, (2008)

    [23]Reeves, G. K. and Harrison, H. B. Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Lett, Vol. EDL-3, p. 111. (1982).

    [24]Schroder, Dieter K, Semiconductor material and device characterization, John Wiley & Sons, Inc., (2006).

    [25]黃鶴, 氮化鎵發光二極體與太陽能電池積體化的可行性研究,國立台灣科技大學光電工程所碩士論文, (2009)。

    [26]謝曜聰, 氮化鎵元件p型接觸微影製程研發, 國立台灣科技大學光電工程所碩士論文, (2010)。

    [27]董哲惟, 研製和量測有二氧化矽電流阻擋層的氮化鎵發光二極體,國立台灣科技大學光電工程所碩士論文, (2010)。

    [28] Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, M. Murakami, “Effects of annealing in an oxygen ambient on electrical properties of ohmic contacts to p-type GaN,”J. Electron. Mater., vol. 28,no. 3, pp. 341–346, Dec. (1999).

    [29] J.K. Ho, C.S. Jong, C. C. Chiu, C.N. Huang, C.Y. Chen, K.K. Shih, “Low resistance ohmic contacts to p-GaN,” Appl. Phys. Lett.,vol. 74, no. 9, pp. 1275–1277, Mar. (1999).

    [30] J.K. Ho, C.S. Jong, C. C. Chiu, C.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, J.J. Kai, “Low resistance ohmic contacts to p-GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., vol. 86, no. 8,pp. 4491–4493, Oct. (1999).

    [31] Y.J. Lin, Z.D. Li, C.W. Hsu, F.T. Chien, C.T. Lee, S.T. Shao, H.C. Chang, “Investigation of degradation for ohmic performance of oxidized Au/Ni/Mg-doped GaN,”Appl. Phys. Lett., vol. 82, no. 17,pp. 2817–2819, Apr. (2003).

    [32] Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. D. Hu, T. J. Yu, Z. J. Yang, L. S. Yu, G. Y. Zhang, W. L. Zheng, Q. J. Jia, and X. M. Jiang, “Effects of oxidation by O2 plasma on formation of Ni/Au ohmic contact top-GaN,” J. Appl. Phys., vol. 96, no. 4, pp. 2091–2094, Aug. (2004).

    [33] D. Mistele, F. Fedler, H. Klausing, T. Rotter, J. Stemmer, O. K. Semchinova, and J. Aderhold, “Investigation of Ni/Au-contacts on p-GaN annealed in different atmospheres,” J. Cryst. Growth, vol. 230,no. 3/4, pp. 564–568, Sep. (2001).

    [34] S. J. Chang, C. H. Lan, J. D. Hwang, Y. C. Cheng, W. J. Lin, J. C. Lin,H. Z. Chen, Sputtered Indium-Tin-Oxide on p-GaN, Journal of The Electrochemical Society, 155(2)H140-H143 (2008)

    [35]K. M. Chang, J. Y. Chu, C. C. Cheng, Investigation of indium tin oxide ohmic contact to p-GaN and its application to high-brightness GaN-based light-emitting diodes, Solid-State Electronics 49 (2005) 1381–1386

    [36]S. H. Su, C. C. Hou, M. Yokoyama, R. S. Shieh, S. M. Chen, Temperature Effect on the Optoelectronic Properties of GaN-based Light-Emitting Diodes with ITO p-Contacts, Journal of The Electrochemical Society, 154 (5) J155-J158 (2007)

    QR CODE