簡易檢索 / 詳目顯示

研究生: 詹博鈞
Po-Chun Chan
論文名稱: 利用標準CMOS製程製作十字網格濾波紅外線熱輻射發光元件
Fabrication of Infrared Thermal Emitters with Cross-Shaped Mesh Filters by CMOS Process
指導教授: 李三良
San-Liang Lee
口試委員: 蘇忠傑
Jung-Chieh Su
何文章
Wen-Jeng Ho
洪勇智
Yung-Jr Hung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 遠紅外光熱輻射發光元件互補式金屬氧化物半導體製程
外文關鍵詞: far infrared, thermal emitter, CMOS process
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遠紅外線熱輻射發光元件在醫療上已有許多應用,例如增加血液循環、加速傷口復原等。而如何以簡單、便宜的方式製作一個高效率的光源,而且為具醫療效果的8-12 μm波長光源為本論文的目標。
    我們分析先前製作之遠紅外線熱輻射發光元件的問題,針對其熱均勻度及發光效率做改良,設計兩種參數驗證帶通濾波的存在。本次與利用0.35-μm的CMOS標準製程製作,以達到好的製程穩定性、低成本及大量製造的目標。
    本次重新設計加熱絲形狀,螺旋金屬絲之間的距離採用漸變的間距,以達到表面溫度均勻分布的目的;並透過減少低發射率金屬材料的使用面積。所製作出遠紅外光熱輻射發光元件,加熱面積僅為2.63 mm2,達到發光效率3.77 × 10-4,總發光功率達到0.799 mW,單位面積輸出功率0.304 mW/mm2。
    利用週期性的十字形狀網格製作遠紅外線濾波器,利用模擬軟體設計與下線製作,實現了在14 μm波長附近的濾波,且同時維持高穿透率。此外,製作出騰空的加熱晶片,使晶片大大減少固體上的熱傳導,顯著提升其輸出功率,以及發光效率。


    Far-infrared (FIR) thermal emitters are useful in medical applications. The goal of this work is to make a high-efficiency light source in a simple and cheap way, and to realized light sources of 8-12 μm wavelength range for medical applications.
    We first analyze the issues of the previous work, and then design the thermal emitters to have improved thermal uniformity and luminous efficiency. The band-pass filtering is verified by varying two parameters in the design. We successfully fabricate the thermal emitters using the 0.35-μm CMOS standard process to achieve good process stability, low cost, and mass manufacturing.
    In this work, we redesign the shape and layout of the heating wire. The spacing between the spiral wires is gradually changed to achieve uniform surface temperature distribution under heating. We reduce the area covered by the metal layer and realize the FIR emitters with higher emissivity and luminous efficiency. The FIR component with a heating area of only 2.63 mm2 can achieve a radiant efficiency of 3.77 × 10-4, total emitting power of 0.799 mW, and output power per unit area of 0.304 mW/mm2.
    The periodic cross-hole meshed filter is verified by both simulation and experiments. The filter shows a 14-μm center frequency with high transmission. The hanging chips are found to isolate the heat transfer on the heating area and significantly increase the radiant power and efficiency.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 研究動機 1 1-1 前言 1 1-2 研究動機 1 1-3 紅外光在醫學上的運用 2 1-4 研究方向 3 1-5 論文架構 3 第二章 基本原理與技術 4 2-1 黑體輻射簡介 4 2-2 不同材料光譜發射率 6 2-3 半導體與金屬特性 9 2-4 發光效率 9 2-5 金屬網格濾波器 12 第三章 元件設計及模擬 15 3-1 元件結構 15 3-2 打線封裝 20 3-3 濾波層模擬 20 3-4 加熱層模擬 23 第四章 元件特性量測 25 4-1 遠紅外光頻譜量測 25 4-2 發光功率量測 29 4-3 市售紅外光元件比較 36 4-4 溫度分布量測 38 4-5 晶片脫離PCB板獨立加熱 39 第五章 絕熱封裝基板 43 5-1 結構設計 43 5-2 製程流程 43 5-3 製程結果 47 第六章 以微機電製程實現FIR元件 50 6-1 結構設計 50 6-2 製程流程 52 第七章 結論 58 7-1 成果與討論 58 7-2 未來研究方向 59 參考文獻 60

    [1] D. L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?” Proceedings of the IEEE, vol. 93(10), 1722-1743, 2005.
    [2] H. San, C. Li, X. Chen, R. Chen, and Q. Zhang, “Silicon-based micro-machined infrared emitters with a micro-bridge and a self-heating membrane structure,” IEEE Photonics Technology Letters, vol. 25(11), 1014-1016, 2013.
    [3] 謝鸚爗、林招膨、劉威忠、林群智,“遠紅外線在醫學上之應用及其作用機制”,台灣應用輻射與同位素雜誌,3: 333-340,2007。
    [4] 李湘琳,“探討遠紅外線於穴位照射對血液透析病患貧血之影響”,碩士論文,國立台北護理健康大學,2014。
    [5] 賴世豪,“利用標準CMOS製程製作螺線型微型金屬加熱絲之紅外光熱輻射發光元件”,碩士論文,國立台灣科技大學,2018。
    [6] J. S. Dover, T. J. Phillips, and K. A. Arndt, “Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation,” Journal of the American Academy of Dermatology, vol. 20(2), 278-286, 1989.
    [7] Y. Hamada, F. Teraoka, T. Matsumoto, A. Madachi, F. Toki, E. Uda, R. Hase, J. Takahashi, and N. Matsuura, “Effects of far infrared ray on Hela cells and WI-38 cells,” International Congress Series, vol. 1255, 339-341, 2003.
    [8] 劉海平、沈雪勇、丁光宏,“針灸與經絡穴位紅外輻射特性”,中國針灸,24(2),2004。
    [9] H. Tyokawa, Y. Matsui, J. Uhara, H. Tsuchiya, S. Teshima, H. Nakanishi, A-Hon. Kwon, Y. Azuma, T. Nagaoka, T. Ogawa, and Y. Kamiyama, “Promotive effects of far-infrared ray on full-thickness skin wound healing in rats,” Experimental Biology and Medicine, vol. 228(6), 724-729, 2003.
    [10] A. Masuda, Y. Koga, M. Hattanmaru, S. Minagoe, and C. Tei, “The effects of repeated thermal therapy for patients with chronic pain,” Journal of Psychosomatic Research, vol. 74(5), 288-294, 2005.
    [11] H. Baehr, and K. Stephan, Heat and Mass Transfer, Springer Berlin Heidelberg, 2011.
    [12] W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wollenstein, “Micromachined IR-source with excellent blackbody like behavior,” Proceedings of SPIE, vol. 5836, 540-548, 2005.
    [13] Y. Udagawa, H. Ishigame, and H. Nagasawa, “Effects of hydroxyapatite in combination with far-infrared rays on spontaneous mammary tumorigenesis in SHN mice,” The American journal of Chinese medicine, vol. 30(4), 495-505, 2002.
    [14] S. Dong, N. Li, S. Chen, X. Liu, and W. Lu, “Impact ionization in quantum well infrared photodetectors with different number of periods,” Journal of Applied Physics, vol. 111(3), 034504, 2012.
    [15] W. J. Yoo, K. W. Jang, J. K. Seo, J. Moon, K. T. Han, J. Y. Park, B. G. Park, and B. Lee, “Development of a 2-Channel Embedded Infrared Fiber-Optic Temperature Sensor Using Silver Halide Optical Fibers,” Sensors, vol. 11(10), 9549-9559, 2011.
    [16] N. M. Ravindra, B. Sopori, O. H. Gokce, S. X. Cheng, A. Shenoy, L. Jin, S. Abedrabbo, W. Chen, and Y. Zhang, “Emissivity Measurements and Modeling of Silicon-Related Materials: An Overview,” International Journal of Thermophysics, vol. 22(5), 1593-1611, 2001.
    [17] J. Bartl and M. Baranek, “Emissivity of Aluminium and Its Importance for Radiometric Measurement,” Measurements of Physical Quantities, vol. 4(3), 31-36, 2004.
    [18] C. E. Mortimer, Chemistry: A Conceptual Approach, Van Nostrand Reinhold, 1975.
    [19] C. J. Glassbrenner and G. A. Slack, “Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point,” Phys. Rev., vol. 134, Article A1058, 1964.
    [20] D. J. Shelton, J. C. Ginn, and G. D. Boreman, “Bandwidth Variations in Conformal Infrared Frequency Selective Surfaces,” International Symposium of IEEE Antennas and Propagation Society, Honolulu, Hawaii, USA, 3976-3979, 2007.
    [21] K. D. Mőller, J. B. Warren, J. B. Heaney, and C. Kotecki, “Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions,” Applied Optics, vol. 35(31), 6216215, 1996.
    [22] A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and A. M. P. A. da Silva, “Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results,” Advances in Optical Technologies, vol. 2012(530512), 2012.
    [23] T. Timusk and P. L. Richards, “Near Millimeter Wave Bandpass Filters,” Applied Optics, vol. 20(8), 1355-1360, 1981.
    [24] O. Sternberg, K. D. Moller, H. Grebel, K. P. Stewart, R. M. Henry, “Inductive Cross Shaped Metal Meshes on Silicon Substrate."Infrared Physics & Technology, vol. 44(1), 17-25, 2003.
    [25] T. Ott, M. Schossig, V. Norkus, and G. Gerlach, “Efficient thermal infrared emitter with high radiant power,” Journal of Sensors and Sensor Systems, vol. 4(2), 313-319, 2015.
    [26] ICx Photonics, “Broadband Pulsed Infrared Light Sources,” Data Sheet, Oct. 2017.
    (http://www.amstechnologies.com/fileadmin/amsmedia/downloads/2533_IR_Broadband_Sources.pdf)
    [27] M. C. Wingert, J. Zheng, S. Kwon and R. Chen, “Thermal Transport in Amorphous Materials: A review,” Semiconductor Science and Technology, vol. 31(11): 113003, 2016.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE